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We study radiation emitted during the gravitational collapse from two different types of shells. We 
assume that one shell is made of dark matter and is completely transparent to the test scalar (for 
simplicity) field which belongs to the standard model, while the other shell is made of the standard 
model particles and is totally reflecting to the scalar field. These two shells have exactly the same mass, 
charge and angular momentum (though we set the charge and angular momentum to zero), and therefore 
follow the same geodesic trajectory. However, we demonstrate that they radiate away different amount 
of energy during the collapse. This difference can in principle be used by an asymptotic observer to 
reconstruct the physical properties of the initial collapsing object other than mass, charge and angular 
momentum. This result has implications for the information paradox and expands the list of the type of 
information which can be released from a collapsing object.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In Einstein–Maxwell theory a stationary black hole solution is 
generally characterized by its mass, electric charge and angular 
momentum. In more general theories, some scalar field hairs have 
also been found [1–3], and they can be considered as generalized 
(or Noether) charges. All additional information about the initial 
state of matter that formed the black hole is lost during the col-
lapse. This includes the global charges (e.g. lepton number, baryon 
number, flavor [4]), angular momentum, charge and energy distri-
butions (as opposed to their total values which are conserved) etc. 
To recover this information after the black hole is formed seems 
to be impossible without invoking some exotic physics. Instead of 
looking at the t → ∞, i.e. an exact Schwarzschild solution in an 
asymptotically flat space–time, we can take a look at the near hori-
zon region. Information about the initial state might be released 
during the collapse, since once the collapse is over there is no 
much one can do. It is well known that during the collapse an ob-
ject radiates away its higher multipoles and other irregularities in 
the so-called balding phase before a perfect spherically symmetric 
horizon is formed. The problem is that these are all gravitational 
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degrees of freedom, and cannot account for other non-gravitational 
information content. In [5,6], it was shown that gravitational col-
lapse is followed by the so-called pre-Hawking radiation from the 
very beginning of the collapse, simply because the metric is time 
dependent. This radiation becomes completely thermal Hawking 
radiation only in t → ∞ limit when the event horizon is formed. 
Since the collapsing object has only finite amount of mass, an 
asymptotic observer would never witness the formation of the 
horizon at t → ∞. For him, the collapsing shell will slowly get con-
verted into not-quite-thermal radiation before it reaches its own 
Schwarzschild radius. It was demonstrated in [7] that the evolu-
tion is completely unitary in such a setup.

In this paper, we also concentrate on the pre-Hawking radia-
tion, but we are using the standard analysis as defined in [8,9]. We 
explicitly construct an example in which two shells have exactly 
the same mass, charge and angular momentum (though we set 
the charge and angular momentum to zero for simplicity). By con-
struct, they follow the same gravitational trajectory, however they 
emit different radiation during the collapse. We achieve this by 
giving different physical properties to the collapsing shells, other 
than mass, charge and angular momentum. In particular, one of 
the shells is completely transparent to radiation, and the other is 
totally reflecting. This is for example the situation where one of the 
shells is made of dark matter and the other of the standard model 
particles. If one studies emission of the standard model particles 
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from these shells, then the dark matter shell will be completely
transparent to radiation, and the standard model shell will be 
totally or partially reflecting. Of course, there is a whole contin-
uum of cases between the totally reflecting and totally transparent 
shells, but for the purpose of illustration, these two extremes will 
suffice. For simplicity, we use a spherically symmetric falling shell. 
In this case only s-wave scalar field is relevant, and therefore the 
radiation field is chosen to be a scalar field. In the realistic stan-
dard model, one could use any other field. We show that the flux 
of energy and power spectra of radiation emitting from these two 
shells is notably different, though in the limit of t → ∞ the fluxes 
become identical. Thus, an observer studying the flux of the stan-
dard model particles from a collapsing shell could in principle tell 
if the shell is made of the dark or ordinary matter.

2. The trajectory of the collapsing shell

For our purpose, we consider a freely falling massive spherical 
shell. The time dependent radius of the shell is R(τ ), where τ is 
the proper time of the observer located on the shell. The geometry 
outside the shell is Schwarzschild

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2d� (1)

d� = dθ2 + sin2 θdφ2. (2)

The geometry inside the shell is by the Birkhoff theorem flat 
Minkowski space

ds2 = −dT 2 + dr2 + r2d� (3)

The motion of the shell can be found by matching the geometry 
inside and outside the shell [10]. The equation of motion is given 
in terms of the conserved quantity μ, which is just the rest mass 
of the shell.

μ = −R

[
(1 − 2M

R
+ Ṙ2)

1
2 − (1 + Ṙ2)

1
2

]
. (4)

Here, Ṙ = dR
dτ . From Eq. (4) we have

Ṙ =
( M2

μ2
− 1 + M

R
+ μ2

4R2

) 1
2

(5)

Then, the proper time on the shell is given by

τ =
∫

dτ =
∫

dR

Ṙ
(6)

The time coordinate of an asymptotic observer on the shell is

t =
∫

dt =
∫ (

1 + Ṙ2

1− 2M
R

) 1
2

(
1 − 2M

R

) 1
2

dτ (7)

The time coordinate of an observer on the shell is

T =
∫

dT =
∫ (

1 + Ṙ2
) 1

2
dτ (8)

3. Reflecting and transparent shells

We are set to study whether two massive shells with the same 
gravitational trajectory can have different pre-Hawking radiation. 
To achieve this we consider two shells of equal mass, but one 
is completely transparent to a scalar field that propagates in this 
background, while the other one reflects the scalar field totally. 

Fig. 1. Penrose diagram for the transparent collapsing shell. The mode crosses the 
shell at some initial time τi , passes through the center, and crosses again at some 
final time τ f .

The evolution of the scalar field in a curved background outside 
the shell is described by

�φ = 0 (9)

where the � operator is covariant. Inside the shell, the � opera-
tor is Minkowski. Because of the spherical symmetry, as usual, we 
simplify the discussion and focus on a 1 + 1 dimensional scalar 
field, φ(t, r), which satisfies the wave equation

∂2
t φ − ∂2

r∗φ = 0, for r > R (10)

∂2
T φ − ∂2

r φ = 0, for r < R (11)

Here r∗ = ∫ dr
1− 2M

r
is the usual tortoise coordinate. The trajectory 

of the spherical shell is given by Eq. (5), and it is the same for 
both shells since they have the same mass (and carry no charge 
nor angular momentum). There are two types of solutions to the 
wave equation for r > R , i.e. f (t ± r∗). The function f (t − r∗) rep-
resents a wave moving to the right, while f (t + r∗) represents a 
wave moving to the left. When a plane wave is propagating in-
ward toward the origin, it is considered as an ingoing mode and 
can be written as

φin ∼ exp(−iωv) (12)

where we defined the ingoing and outgoing null coordinates v =
t + r∗ and u = t − r∗ . When the ingoing mode passes through the 
center, it starts propagating outward (away from the center), and 
it becomes an outgoing mode. The form of wave function is the 
same as before, but its argument must be a function of an outgoing 
coordinate f (u), i.e.

φout ∼ exp(−iωp(u)), (13)

where p(u) is a function of the coordinate u.
The shells in our discussion here are massive, which is different 

from the massless shells discussed in usual cases. The massless 
scalar field is moving faster than the shell and will pass through 
or be reflected by the matter on the shell.

We now consider the transparent shell first. While the shell is 
collapsing, the incoming scalar field mode passes through the shell 
and reaches the center of the shell. Once it passes through the 
center, it becomes an outgoing mode. As shown in Fig. 1, the mode 
crosses the shell at some initial time τi , passes through the center, 
and crosses again at some final time τ f . Since the field moves at 
the speed of light, τi and τ f must satisfy the condition

R(τ f ) + R(τi) = T (τ f ) − T (τi). (14)
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