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If the Universe undergoes a phase transition, at which global monopoles are created or destroyed,
topology of its spatial sections can change. More specifically, by making use of Myers’ theorem, we
show that, after a transition in which global monopoles form, spatial sections of a spatially flat, infinite
Universe becomes finite and closed. This implies that global monopoles can change the topology of
Universe’s spatial sections (from infinite and open to finite and closed). Global monopoles cannot alter

the topology of the space-time manifold.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The question of global properties (topology) of our Universe is
a fascinating one, and it has been attracting attention for a long
time. Yet only as-of-recently the data have been good enough to
put meaningful observational constraints on the Universe’s topol-
ogy. While Einstein’s equations uniquely specify local properties of
space-time (characterized by the metric tensor), they fail to de-
termine its global (topological) properties. Friedmann, Robertson
and Walker (FRW) were first who observed that the most general
solution corresponding to spatially homogeneous Universe with
constant curvature x of its spatial sections is the following FLRW
metric (L stands for Lemaitre),

a?(t)dr?
1—kr?
where c¢ is the speed of light and 0 <r <oo, 0<6 <m, 0<
¢ < 2m are spherical coordinates. Recent cosmic microwave back-
ground and large scale structure observations tell us that, at large

scales the metric (1) describes quite accurately our Universe. When
Kk in (1) is

ds? = —c%dt* + + a?(t)r?[de? + sin(0)dep?], (1)

1. negative (x < 0), then spatial sections of the Universe are hy-
perbolic,

2. zero (k = 0), then spatial sections are flat;

3. positive (x > 0), then the spatial sections are positively curved
and they are locally homeomorphic to the geometry of the
three dimensional sphere.
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Older literature typically assumes that « < 0 implies infinite
spatial sections, while when « > 0, spatial sections are compact.
While the latter statement is correct, recent advancements in our
understanding of (topology of) three dimensional manifolds tell
us that we must be much more careful when drawing conclu-
sions from the observational fact that the metric describing our
observable Universe is well approximated by the FLRW metric (1).
Namely, various boundary conditions could be imposed on the Uni-
verse’s spatial sections [1], giving as a result a large number of
possible three dimensional manifolds, only one of which corre-
sponds to that of our Universe.

Let us now briefly recall the relevant observational facts. The
first observational evidence that supports that we live in a (nearly)
flat universe (k ~ 0) was presented in 2000 by the balloon experi-
ments Boomerang [2] and Maxima [3]. A recent bound on « [4] is
obtained when observations of BAOs (Baryon Acoustic Oscillations)
are combined with the Planck data [5] and the polarization data
from the WMAP satellite (WP),

Kkc?
QI( =TT 5 (2)
Hg
where Hg ~ 68 km/s/Mpc (when the BAO data are dropped, one
obtains 0.006 > €, > —0.086 [5]). Eq. (2) implies a large lower
bound on the curvature radius of spatial sections, Rc = 1//]k] >
60 Gpc. The bound (2) implies the following robust conclusion:
“our [observable] Universe is spatially flat to an accuracy of bet-
ter than a percent” (cited from page 42 of Ref. [5]).

Even if the Universe is spatially flat, it can be made finite by im-
posing suitable periodic boundary conditions; the precise nature of
periodic conditions determines Universe’s global topology [1]. Al-
though different scenarios have been considered in literature (good
reviews are given in Refs. [1,6-10]), so far no evidence has been

Q, =—0.003 £ 0.003,
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found that would favor any of the proposed models. For exam-
ple, extensive mining of the CMB data has been performed [11-13]
in order to find pairs of circles, which are a telltale signature for
non-trivial large-scale topology of the Universe, but so far no con-
vincing signature has been found.

The above considerations make an implicit assumption that
spatial curvature of the Universe is given and that it cannot be
changed throughout the history of our Universe. In this letter we
argue that this assumption ought to be relaxed, and we propose a
dynamical mechanism:

formation of global monopoles at an early universe phase transition,

by which the (average, measured) spatial curvature of the Universe
can change in the sense that it will become positive if it starts
slightly negative or zero. Strictly speaking this is true provided the
Universe was before the transition non-compact, i.e. it was created
with no periodic boundary conditions imposed on it.

This claim will leave many readers with a queasy feeling since,
when « changes from « <0 to k > 0, spatial sections could
change from infinite (hyperbolic or parabolic) to finite (elliptic),
thus changing the topology of spatial sections. One should keep
in mind that all this happens at space-like hyper-surfaces of con-
stant time, and hence it is not in contradiction with any laws of
causality. And yet it does leave us with an uncomfortable feeling
that ‘somewhere there’ distant spatial sections of the Universe are
reconnecting, thereby changing them from infinite to finite and pe-
riodic. This will be the case provided all spatial dimensions are
equally affected, which is the case in the mechanism considered
in this letter. Even though not directly observable today, this pro-
cess can have direct consequences for our future. Indeed, when
an observer in that reconnected Universe sends a (light) signal,
it will eventually arrive from the opposite direction. Furthermore,
the future of a spatially finite (compact) universe can change from
infinite and uneventful to finite and singular (namely, if cosmolog-
ical constant is zero such a universe will end up in a Big Crunch
singularity). Because of all of these reasons, a tacit consensus has
emerged that no topology change is possible in our Universe (al-
beit strictly speaking measurements constrain the Universe’s spa-
tial topology only after recombination). We argue in this work that
this consensus needs to be reassessed.

In fact, the idea that the curvature of spatial sections could
change can be traced back to the work of Krasinski [14] based on
Stephani’s exact solution [15] to Einstein’s equations. Even though
Krasinski has argued that the curvature of spatial sections could
dynamically change, he has not offered any mechanism by which
such a change could occur [16]. In this letter we provide such a
dynamical mechanism.

A particularly instructive case to consider is the maximally
symmetric de Sitter space, whose geometry can be clearly visual-
ized from its five dimensional (flat, Minkowskian) embedding (see
Fig. 1),

ds? = —dT? +dX? +dX3 +dXx2 + dx2,
Ry =T?—R?, RR=X?+ X3+ X3+ X2. 3)

Thus de Sitter space is geometrically a four dimensional hyper-
boloid H#, and its symmetry is the five dimensional Lorentz group,
S0(1, 4), which has - just like the Poincaré group of the symme-
tries of Minkowski space - 10 symmetry generators. This means
that de Sitter space also has 10 global symmetries (Killing vec-
tors). Common coordinates on de Sitter space (3) are those of con-
stant curvature of its spatial sections, and they include: (a) closed
(global) coordinates have x > 0; (b) flat (Euclidean) coordinates
(Poincaré patch) have x =0 and (c) open coordinates (hyperbolic

T

x>0

k=0

k<0

Fig. 1. Hypersurfaces of constant time of de Sitter H* with a time dependent «.

sections) have k < 0. Krasinski has, however, pointed out that
there are also de Sitter coordinates in which « changes in time.
Both cases, when k changes from negative to positive, and v.v. are
possible. An example of the metric when « (t) changes from nega-
tive to positive can be easily inferred from [14],

2_ 2 (r/r0)4 2
[1+ ctr2/ra12[(Hro/c)? — ct/ro]

+ ——————|dr? +r%d6? + sin®(0)d¢? |, 4
[1+ctr2/rg]2[ e ] @

where rg, ¢, H are constants. That this is a de Sitter space can be
checked, for example, by evaluating the Riemann tensor. One finds

Ruvap = (R/12)(8uagvp — Eup8va) » (5)

where R = 12H?/c? = 12/R% is the Ricci curvature scalar, H =
const. is the Hubble parameter and Ry = c¢/H is the Hubble ra-
dius. Relation (5) holds uniquely for maximally symmetric spaces
such as de Sitter space. The curvature of spatial sections of de Sit-
ter in (4) can be inferred from the Riemann curvature of spatial
sections,

®R 24ct 6K (b)
GR. = Lo oo (CF - Bl 6
ijkl 6 (&ik&jt — &il&jk) » rg 20 (6)
from which we infer,
4cta®(t) . e
K(t) = —> with a(t) =e™, (7)
T
0

which means that «k <0 for t <0, k =0 for t =0, and x >0
for t > 0. Note that topology of spatial sections changes at t = 0.
For t < O the sections are three dimensional hyperboloids, with
a time dependent (physical) throat radius rc(t) = rS/Z/J—_a, for
t = 0 they are paraboloids and for t > 0 they are three-spheres
with a (time-dependent) radius, r. = rg/z/\/a (see Fig. 1). Con-
sequently, topology of spatial sections changes at t =0, as can
be seen in Fig. 1 [17]. A similar (albeit inhomogeneous) construc-
tion is possible on FLRW space-times. While this shows that there
are observers for which topology of spatial sections of an expand-
ing space-time changes, it does not tell us how to realize such a
change, and whether such a change is possible in a realistic setting.
This is what we address next.
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