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Spacetime with general linear vector distortion is introduced. Thus, the torsion and the nonmetricity 
of the affine connection are assumed to be proportional to a vector field (and not its derivatives). The 
resulting two-parameter family of non-Riemannian geometries generalises the conformal Weyl geometry 
and some other interesting special cases. Taking into account the leading nonlinear correction to the 
Einstein–Hilbert action results uniquely in the one-parameter extension of the Starobinsky inflation 
known as the alpha-attractor. The most general quadratic curvature action introduces, in addition to 
the canonical vector kinetic term, novel ghost-free vector-tensor interactions.
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1. Spacetime degrees of freedom

In Einstein’s General theory of Relativity (GR), gravitation is 
interpreted as curving of spacetime geometry, and can be de-
scribed solely in terms of a metric. In addition to a metric structure 
however, a manifold representing a physical spacetime must also 
be endowed with an affine structure that determines the parallel 
transport. Though they coincide in GR, a priori these structures are 
both mathematically and physically independent [19].

Technically this can be formulated simply as the statement that 
the spacetime connection ∇̂ need not be the Levi–Civita connec-
tion ∇ as GR postulates. The ∇ is determined entirely by the 
metric gμν as given by the Christoffel symbols,

�α
βγ = 1

2
gαλ

(
gβλ,α + gαλ,β − gαβ,γ

)
. (1)

This is the unique connection that is covariantly conserved, 
∇α gμν = 0 and symmetric, �α[βγ ] = 0. The metric has D(D + 1)/2
components in a D-dimensional spacetime, whereas the con-
nection has D3 components which are, in principle, completely 
independent degrees of freedom. Out of the D3 components, 
D2(D − 1)/2 reside in the antisymmetric part

T α
βγ ≡ �̂α[βγ ] , (2)
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which is called torsion. The remaining D2(D +1)/2 degrees of free-
dom are encoded in the non-metricity tensor

Q αμν ≡ ∇̂α gμν . (3)

The distortion �̂α
βγ − �α

βγ of the affine structure is the combined 
effect of the torsion and the nonmetricity,

�̂α
βγ = �α

βγ + K α
βγ + Dα

βγ , (4)

where the contortion and the deflection tensors are defined as

K α
βγ = T α

βγ − Tβγ
α − Tγ β

α , (5)

Dα
βγ = 1

2
gαλ

(
Q λβγ − Q βγ λ − Q γ βλ

)
, (6)

respectively [12].

2. Generalising Weyl geometry

The profound idea of gauge symmetry was brought forth within 
a pioneering non-Riemannian extension of the GR framework due 
to Hermann Weyl [23]. In Weyl’s geometry, the metric compatibil-
ity condition is abandoned (while maintaining a symmetric con-
nection) in such a way that the nonmetricity Q μαβ of the connec-
tion ∇̂ is determined by a vector Aμ as follows:

Q μαβ ≡ ∇̂μgαβ = −2Aμgαβ . (7)
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Table 1
Spacetimes with linear vector distortion. The second column indicates the number 
of free parameters.

Geometry # Constraints

General 2 –
Riemann 0 b1 = b2 = b3 = 0
Dilation (Weyl) 0 2b1 − b2 = b3 = 0
Generalised Weyl 1 2b1 − b2 = b3

No dilation 1 b2 = b3

Pure deflection 0 b2 = b3 = 0
SVN [3] 1 b3 = 0
Polar contortion 0 b1 = b2 = b3

(Axial contortion 0 b1 = b2 = b3 = 0, b4 �= 0)

Thus, a gauge symmetry arises because this relation is invariant 
under the (local) conformal transformation of the metric gμν →
e2�(x) gμν when simultaneously the vector is transformed as Aμ →
Aμ −∂μ�(x). The connection coefficients of ∇̂ derived from (7) are

�̂α
βγ = �α

βγ −
(

Aα gβγ − 2A(βδα
γ )

)
, (8)

where the first term represents again the Christoffel symbols (1)
and the expression inside the brackets is the deflection tensor (6). 
The theory obtained by writing the Einstein–Hilbert action in Weyl 
geometry is a trivial extension as the vector field is non-dynamical, 
and theories defined by nonlinear functions of the Einstein–Hilbert 
term turn out to be equivalent to the Palatini- f (R) models. More 
general (Gauss–Bonnet-type) curvature terms however can gener-
ate new dynamical, ghost-free vector-tensor theories [7], see also 
[11].

In this letter we propose a linear vector distortion that gener-
alises the Weyl geometry (8). That is, we consider the most general 
connection that is determined linearly by a vector field Aμ without 
derivatives. The distortion is then given by 3 independent terms1:

�̂α
βγ = �α

βγ − b1 Aα gβγ + b2δ
α
(β Aγ ) + b3δ

α[β Aγ ] . (9)

We see that the original Weyl connection (8) is recovered for b2 =
2b1 = 2 and b3 = 0. One of the parameters in (9) can actually be 
absorbed into the normalization of the vector field, but we will 
leave the three of them to track the effects of each term in the 
following. The torsion (2) and the non-metricity (3) tensors for the 
vector distortion are, respectively,

Q μαβ = (b3 − b2)Aμgαβ + (2b1 − b2 − b3)A(α gβ)μ , (10)

T α
βγ = b3δ

α[β Aγ ] . (11)

Now b1 and b2 contribute only to deflection, while b3 causes 
also contortion. The torsion-free limit of this geometry, given by 
b3 = 0 but general b1 and b2, has been in fact considered earlier 
in Ref. [3] (for other investigations into the nonmetric sector, see 
e.g. [13,4]). Some other special cases are listed in the Table 1.

Amongst them is, as an example, the Weyl–Cartan spacetime 
that arises from adding torsion to the Weyl connection (8). A re-
markable class of geometries is obtained if we set b3 = 2b1 − b2
in (10) so that we also recover the Weyl non-metricity relation 
given in (7). In detail, given b3 = 2b1 − b2, we have ∇μgαβ =
2(b1 − b2)Aμgαβ , which is invariant under the Weyl transforma-
tion gμν → e2�(x) gμν and Aμ → Aμ + ∂μ�(x)/(b1 − b2). This 
presents a whole family of generalised Weyl geometries where the 
gauge connection of the conformal covariant derivative carries also 

1 The axial contortion term b4ε
α

βγμ Ãμ is excluded because it would require that 
the field Ãμ was a pseudovector. Let us mention that adding such a piece would not 
affect our results as the actions considered in this letter would imply Ãμ = 0.

torsion, as seen from (11). Thus, we can introduce the covariant 
derivative Dμgαβ ≡

[
∂μ − 2(b1 − b2)Aμ

]
gαβ , in terms of which 

the connection can be expressed as

�̂
μ
αβ = 1

2
gμλ

(
Dα gλβ + Dβ gαλ − Dλgαβ

)
+ K μ

αβ , (12)

the first piece respecting the conformal invariance, but the contor-
tion,

K μ
αβ = (b2 − 2b1)

(
Aμgαβ − δα

μ Aβ

)
, (13)

in general breaking it, unless 2b1 − b2 = 0 and, hence, the torsion 
vanishes. The Weyl connection (8) is thus the unique conformally 
invariant connection, but the invariance of the non-metricity re-
lation can be retained in a more general Weyl–Cartan spacetime 
given a fixed b3.

Let us return to generic spacetimes described by the connec-
tion (9). The Riemann curvature it generates is given as

Rμνρ
α ≡ ∂ν�̂α

μρ − ∂μ�̂α
νρ + �̂α

νλ�̂
λ
μρ − �̂α

μλ�̂
ν
νρ , (14)

and the corresponding Ricci curvature is just Rμρ ≡ Rμαρ
α . To 

form the scalar (Ricci) curvature we finally need also the metric, 
R ≡ gμνRμν . We find that two extra terms appear due to the 
nontrivial vector geometry:

R = R − β1 A2 + β2∇ · A , (15)

with (setting D = 4 from now on)

β1 ≡ −3

4

[
4b2

1 − 8b1(b2 + b3) + (b2 + b3)
2
]
, (16)

β2 ≡ −3

2
(2b1 + b2 + b3) . (17)

Because of the projective invariance of the Ricci scalar (or, in gen-
eral, of the symmetric part of the Ricci tensor), b2 and b3 only en-
ter in the combination b2 +b3. This is so because such a symmetry 
implies an invariance under the transformation �̂α

μν → �̂α
μν +δα

μξν , 
for an arbitrary vector ξν . This implies that the terms b2 and b3
will give degenerate effects unless the underlying gravitational the-
ory breaks the projective invariance.

3. f (R) actions

From the result (15), we see that the pure Einstein–Hilbert ac-
tion L = M2

pl

√−gR/2 in a spacetime with the linear vector distor-
tion is equivalent to GR because the last term is a total derivative 
and the field equations for the vector field2 imply Aμ = 0. In order 
to obtain nontrivial non-Riemannian dynamics, one needs to con-
sider a more general than the pure Einstein–Hilbert form of the 
action.

A natural starting point is then to take into account higher or-
der curvature corrections that are expected to become relevant 
at high energies. For this purpose, we will consider prototypical 
extension of the Einstein–Hilbert action by including an arbitrary 
dependence upon the Ricci curvature scalar:

S = M2
pl

2

∫
d4x

√−gL , L = f (R) . (18)

2 The mass of the vector vanishes if β1 = 0, and becomes tachyonic for all param-
eter combinations for which β1 < 0. These conditions generalise the result found in 
the torsion-free case, [3], that in our notation states that the mass is non-tachyonic 
if b1 = 2(2 − √

3)b2 < b1 < 2(2 + √
3)b2 when b3 = 0. These conditions can be rel-

evant if one promotes the vector action into the Proca by obtaining the Maxwell 
term from quadratic curvature invariants as in Ref. [7].
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