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We propose a new class of natural inflation models based on a hidden scale invariance. In a very 
generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale 
invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This 
flat direction is lifted by small quantum corrections and inflation is realised without need for an 
unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, 
yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: 
ns − 1 ≈ −0.025 

(
N�

60

)−1
and r ≈ 0.0667 

(
N�

60

)−1
, where N� ≈ 30–65 is a number of efolds during 

observable inflation. This predictions are in reasonable agreement with cosmological measurements. 
Further improvement of the accuracy of these measurements may turn out to be critical in falsifying 
our scenario.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Cosmic inflation is an attractive paradigm for the very early 
universe that resolves some outstanding puzzles of the standard 
hot Big Bang cosmology, such as the horizon and flatness problems 
[1–3] (for important precursor works see also [4–6]). In addition, 
it provides a natural mechanism for generation of nearly scale-
invariant inhomogeneities through the quantum fluctuations of the 
inflaton field, that at later stages result in the observed large scale 
structure of the universe [7]. Observations on Cosmic Microwave 
Background (CMB) radiation and the large scale structure provide 
a strong support for cosmic inflation.

The basic theory of inflation involves a scalar field, the in-
flaton (ϕ), which slowly rolls down the potential hill. In order 
to reproduce the CMB anisotropy measurements [8] and satisfy 
the requirement of sufficient inflation, the scale that defines the 
height of the inflaton potential must be many orders of magnitude 
smaller than the scale that defines its width, that is, the poten-
tial must be very flat. To maintain the hierarchy between these 
two different scales under the quantum corrections a precise ad-
justment of couplings is typically required. This is known as the 
fine-tuning problem of inflation.
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Another potential source that may destabilise the delicate bal-
ance between the height and slope of the inflaton potential is 
higher order operators, which start to contribute significantly for 
large variations of the inflaton field during inflation. The effective 
field theory approximation, which favours |ϕ| � M P , breaks down 
in such cases and inflationary predictions become unreliable.

A class of natural inflation models has been suggested in [10]
as a symmetry-motivated solution to the above fine-tuning prob-
lem. The inflaton in this class of models is a pseudo-Goldstone 
boson of some spontaneously broken anomalous global symme-
try. The flatness of the pseudo-Goldstone potential is guaranteed 
by an approximate shift symmetry, although the underlying global 
symmetry may be the subject of large explicit breaking by non-
renormalisable operators supposedly induced via quantum gravity. 
It seems, however, that the simplest models of natural inflation are 
now disfavoured at 95% CL [8].

In some earlier works [11,12] and more recently in [13,14] the 
scale invariance was advocated as a possible symmetry which is 
also capable of explaining the hierarchy of different scales with-
out fine-tuning. A variety of specific scale-invariant inflationary 
models have been presented in recent years [15–25]. In [16] a uni-
versality class of models has been identified within the conformal 
supergravity framework [see also Ref. [18]]. The importance of the 
underlying scale invariance for natural inflation models has also 
been stressed in [20].

In this paper we would like to propose a new class of natu-
ral inflation models based on a hidden scale invariance, realised 
through the pseudo-Goldstone boson of a spontaneously broken 
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anomalous scaling symmetry, the dilaton. Our key observation is 
that in a very generic scale-invariant model, with an arbitrary 
number of scalar fields and non-renormalisable operators in the 
scalar potential, there always exists a direction in field space which 
is absolutely flat in the classical limit. This flat direction is lifted 
upon quantum corrections being taken into account. Inflation pro-
ceeds along this direction, while other fields reside in their respec-
tive (meta)stable minima. As will be shown below, in the confor-
mal coupling limit within the leading perturbative approximation, 
the generic model is reduced to a one-field model with a potential 
linear in the inflaton field, V (ϕ) ∼ ϕ , with the linear term being 
radiatively induced. In this regime, the model predicts a character-
istic relation between the spectral index ns and the tensor-to-scalar 
ratio r:

ns ≈ 1 − 3

8
r (1)

This relation is in a reasonable agreement with the currently avail-
able data [8,9]. Further improvement on the accuracy of ns and/or 
r measurements may confirm or falsify our scenario.

2. Description of the model

Consider a Wilsonian effective field theory that describes the 
Standard Model, or its extension, coupled to gravity at an ultravio-
let scale �:

S� =
∫

dx4√−g

[(
M2

P

2
+

N∑
i=1

ξi(�)φ2
i

)
R

− 1

2

N∑
i=1

∂μφi∂
μφi − V (φi) + . . .

]
, (2)

where M P ≈ 2.4 · 1018 GeV and we use the mostly positive sig-
nature for the metric tensor. Here we have displayed only the 
scalar sector, which comprises of a set of N scalar fields {φi}
(i = 1, 2, . . . , N) that includes the Standard Model Higgs boson. The 
scalar potential V (φi) is a generic polynomial of the scalar fields 
{φi} respecting the relevant symmetries of the theory:

V (φi) =
∑
{in}

λi1,...,in(�)φi1 ...φin . (3)

where λi1,...,in (�) is a coupling of mass dimension (4 − n) de-
fined at the Wilsonian cut-off �, while ξi(�) is a dimensionless 
non-minimal coupling of the scalar field φi to gravity. The scale in-
variance is explicitly broken in (2) by the ultraviolet cut-off �, the 
Einstein–Hilbert term ∼ M2

P R and dimensionful couplings σi1,...,in
(n �= 4).

We suppose that the underlying theory exhibits a hidden (spon-
taneously broken) scale invariance, which in the effective low-
energy theory is implemented in the (nonlinear) pseudo-Goldstone 
boson, the dilaton χ . A simple way to incorporate the dilaton field 
χ is to rescale the dimensionful parameters in (2) by the respec-
tive powers of χ/ f , f being the dilaton “decay constant”. More 
specifically:

� → �
χ

f
≡ λχ , M2

P → M2
P

(
χ

f

)2

≡ ξχ2 , (4)

λi1,...,in(�) → λi1,...,in(�χ/ f )

(
χ

f

)4−n

≡ σi1,...,in(λχ)χ4−n (5)

Thus, instead of (2) we consider a new action:

Sλχ =
∫

dx4√−g

[(
ξχ2 +

N∑
i=1

ξi(λχ)φ2
i

)
R − 1

2
∂μχ∂μχ

− 1

2

N∑
i=1

∂μφi∂
μφi − V (φi,χ) + . . .

]
,

V (φi,χ) =
∑
{in}

σi1,...,in(λχ) χ(4−n)φi1 ...φin . (6)

This action is manifestly scale invariant in the classical limit, 
the scale invariance being broken at the quantum level through 
the renormalisation group (RG) running of the couplings, i.e., 
∂σi1,...,in

∂χ �= 0, etc.
It is convenient to use a ‘hyperspherical’ representation for the 

set of scalar fields {φi, χ}:

φi = ρ cos (θi)

i−1∏
k=1

sin (θk) , (i = 1,2, . . . , N)

χ = ρ

N∏
k=1

sin (θk) . (7)

Expressing the action (6) through the fields in the above represen-
tation, we observe that the modulus field ρ factors out. That is, 
the first term in the action and the scalar potential presented in 
Eq. (6) can be written as ∼ ρ2ζ(θi)R and ∼ ρ4U (θi), respectively, 
in which

ζ(θi) = ξ(λχ)

N∏
k=1

sin2 (θk) +
N∑

i=1

ξi(λχ) cos2 (θi)

i−1∏
k=1

sin2 (θk) ,

(8)

U (θi) =
N∏

k=1

sin4−n (θk)
∑
{in}

σi1,...,in (λχ) cos
(
θi1

)

×
i1−1∏
k=1

sin (θk) ... cos
(
θin

) in−1∏
k=1

sin (θk) . (9)

We further assume that θi fields are relaxed in their stable or 
sufficiently long-lived (with lifetime longer than the duration of 
the observable inflation) minima 〈θi〉 = θ c

i at very early stages in 
the evolution of the universe. Hence, their dynamics is of no in-
terest to us in what follows and, instead of the full action (6), we 
consider the following reduced one:

S̄ρ =
∫

dx4√−g

[
ζ(ρ)ρ2 R − 1

2
∂μρ∂μρ − V (ρ)

]
, (10)

V (ρ) = σ(ρ)ρ4 , (11)

where ζ ≡ ζ(θ c
i ) and σ ≡ U (θ c

i ). Hence, we arrive at an effec-
tive single-field model with a quartic potential and non-minimal 
coupling [26], but without the standard Einstein–Hilbert term. It 
resembles also the large field limit of the Higgs inflation model 
[27].

In order to reproduce the Einstein–Hilbert term in (10) the 
modulus field ρ has to develop non-zero vacuum expectation 
value, 〈ρ〉 ≡ ρ0. If the vacuum configuration {ρ0, θ c

i } describes 
the current vacuum state of the universe, than ρ0 = M P√

2ζ(ρ0)
with 

ζ(ρ0) ≡ ζ0 > 0. Furthermore, the vacuum energy density, σ(ρ0)M4
P

4ζ 2
0

, 
in this case must be vanishingly small to satisfy the observations. 
That is, the scalar potential must be tuned so that σ(ρ0) ≡ σ0 ∼
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