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The entanglement renormalization flow of a (1 + 1) free boson is formulated as a path integral over 
some auxiliary scalar fields. The resulting effective theory for these fields amounts to the dilaton term 
of non-critical string theory in two spacetime dimensions. A connection between the scalar fields in the 
two theories is provided, allowing to acquire novel insights into how a theory of gravity emerges from 
the entanglement structure of another one without gravity.
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1. Introduction

Currently, striking connections between the spacetime struc-
ture in gravitational theories and patterns of entanglement in dual 
quantum theories have emerged [1–5]. These incipient insights 
have been mostly understood in the framework of the AdS/CFT cor-
respondence [6–8]. The holographic formula of the entanglement 
entropy [1] is a dazzling manifestation of these connections. It has 
been also noteworthy to observe how hyperbolic geometries come 
associated to the entanglement renormalization tensor networks 
(MERA) [9] used in numerical investigations of the ground states 
of quantum critical systems [10]. Using MERA and particularly its 
continuous version, cMERA [11], geometric descriptions of relevant 
states in field theories have been provided [12–14]. However, it has 
not been possible to establish if these geometrical representations 
correspond to solutions of any known theory of gravity.

Our objective in this Letter is to provide a simple example in 
which the cMERA representation of a free (1 + 1) dimensional 
quantum field theory can be described in terms of the solutions 
of a gravity theory. As usual in physics, useful information can be 
gained by considering low-dimensional models. Here, we find that 
the cMERA representation of the ground state of a free massive 
boson amounts to a known solution of string theory in two space-
time dimensions. This theory, despite being the ‘simplest’ string 
theory, retains many interesting features of its more complex peers 
in higher dimensions and remarkably, it can be nonperturbatively 
formulated in terms of a model of nonrelativistic fermions via the 
c = 1 matrix model [15].
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2. Entanglement renormalization for QFT

The Multi-Scale Entanglement Renormalization Ansatz (MERA) 
[9,11] is a real-space renormalization group procedure on the 
quantum state which represents the wavefunction of the quantum 
system (usually in its ground state) at different length scales la-
belled by u. In MERA, u = 0 usually refers to the state at short 
lengths (UV-state |�U V 〉). In general, this state is highly entangled 
and acts as a starting reference point for the renormalization flow. 
MERA carries out a renormalization transformation at each length 
scale u in which, prior to coarse graining the effective degrees 
of freedom at that scale, the short range entanglement between 
them is unitarily removed through a disentangler. The procedure 
is applied an arbitrary number of times until the IR-state |�IR〉 is 
reached.1

The MERA flow can be implemented in a reverse way: start-
ing from |�IR〉, it works by unitarily adding entanglement at 
each length scale until the correct |�U V 〉 is generated. To fix 
the concept, let us generate the state |�(u)〉 obtained by adding 
some amount of entanglement between left and right propagating 
modes of momentum |k| ≤ �e−u to the state |�IR〉,

|�(u)〉 = P e
−i

∫ u
uIR

dû (K(û)+D) |�IR〉. (1)

The symbol P is a path ordering operator which allocates opera-
tors with bigger u to the right and � is a UV momentum cut-off. 

1 For massive theories, |�IR〉 is a completely unentangled state. In massless CFT, 
|�IR〉 amounts to the entangled vacuum of the theory.
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The operator K(û) creates a definite amount of entanglement at a 
given scale u and, in its most general form can be written as,

K(û) =
∫

ddk �(k/�) g(û,k)Ok, (2)

where Ok is an operator acting at the energy scale given by k and 
�(x) = 1 for 0 < x < 1 and zero otherwise. The function g(û, k)

depends on the state and the model that one deals with and rep-
resents the strength of the entangling process at a given scale. The 
operator D corresponds to coarse-graining [11,12]. To focus only in 
the entanglement flow along cMERA while avoiding the effects of 
the coarse graining process it is useful to rescale the cMERA states 
as,

|�̃(u)〉 = eiu D |�(u)〉 = P e
−i

∫ u
uIR

dû K̃(û) |�IR〉. (3)

Now, the entangler operator is given in the interaction picture,

K̃(û) = e−iûD K(û) eiûD =
∫

ddk �(k eû/�) g(û,k eû) Õk, (4)

with Õk = e−iûDOk eiûD = e−dû Ok eû .
This Letter will consider the ground state of a d = 1 free bosonic 

theory with an action given by,

S =
∫

dtdx
[
(∂t φ)2 + (∂x φ)2 − m2φ2

]
. (5)

For this model, K̃ reads as [12],

K̃(û) = − i

2

∫
dk

(
gk(û)a†

k a†
−k − gk(û)∗ ak a−k

)
, (6)

with gk(û) = �(keû/�) g(û, k). The operators a†
k, ak are defined as 

the creation and annihilation operators of a field mode with mo-
mentum k with respect to |0〉, the ground state of the theory 
at u = 0. The commutation relations are 

[
ak,a†

p

]
= δ(k − q), and 

zero otherwise. With this, the cMERA state |�̃(u)〉 amounts to the 
SU(1, 1)/U(1) generalized coherent state [16],

|�〉 = N exp {−1

2

∫
dk

[
�k(u) K+ − �k(u) K−

]} |0〉, (7)

with �k(u) = ∫ u
0 gk(û) dû, �k(u) ≡ �∗

k (u) and a normalization con-
stant given by N = exp{−1/2 

∫
dk |�k(u)|2}. The bilinear bosonic 

operators defined by

K+ = a†
k a†

−k, K− = ak a−k, (8)

together with K0 = 1
2 (a†

k ak + a†
−k a−k + 1), satisfy the Lie algebra 

commutation relations of the group SU(1, 1)

[K0, K±] = ±K± [K−, K+] = 2K0, (9)

and

K− |�〉 = �k(u) |�〉, 〈�| K+ = �k(u) 〈�|. (10)

From this point of view, the cMERA flow amounts to a sequen-
tial generation of a set of coherent states | �〉 where the state |0〉
acts as the reference state.2 This set of coherent states satisfy,∫

dμ(�) |�〉〈�| = I, (11)

2 We refer to [14] for an analysis of the differential generation of entanglement 
required to construct the set of cMERA coherent states (7).

where dμ(�) is the SU(1, 1)-invariant Haar measure on SU(1, 1)/

U(1). Furthermore, each one of these states are one-to-one corre-
sponding to the points in the coset SU(1, 1)/U(1) manifold except 
for some singular points [17]. Namely, the states |�〉 are em-
bedded into a topologically nontrivial space corresponding to a 
2-dimensional hyperbolic space. In other words, each cMERA state 
|�〉 corresponds to a point on a two dimensional hyperbolic space. 
It may be argued that once provided a suitable measure of the dis-
tance between the states |�〉, then a geometric description of the 
cMERA renormalization flow should correspond to the metric of a 
two dimensional AdS space [14]. More to be said about this point 
later in this work in which, we turn to ask whether the cMERA 
renormalization flow for the model (5) may be considered in terms 
of a concrete gravitational theory (see also [18]).

3. cMERA path integral and effective action

Here, we formulate cMERA as a path integral using the coherent 
state formalism. To this aim, we consider the amplitude

G(uF , uIR) = 〈�F |P exp {−i

uF∫
uIR

dû K̃(û)} |�IR〉. (12)

Recalling that ∂u �k(u) = gk(u), then if one follows the standard 
procedure of dividing the renormalization scale interval (uF − uIR)

into N intervals, each with ε = (uF − uIR)/N , then inserting the 
resolution of identity (11) at each interval point,3 and finally let-
ting N go to infinity while dropping O(ε2) terms, the amplitude 
(12) can be written as a formal generalized coherent state path 
integral,

G(uF , uIR) =
∫

dμ(�,�) exp {i Seff[�,�]}, (13)

where

Seff[�,�] = −
uF∫

uIR

du
[
L[�,�; u] + 〈� | K̃(u)|�〉] ,

L[�,�; u] = 1

2i

∫
dk

[
�k(u) ∂u�k(u) − �k(u) ∂u�k(u)

]
. (14)

We have explicitly dropped out the projection operators onto 
the initial and final states but it must be noted that the Euler–
Lagrange equations derived from Seff[�,�] are accompanied by 
the boundary conditions �k(uF ) ≡ �k(uN ) and �k(uIR) ≡ �k(u0)

respectively. Regarding this, the effective action only contains two 
terms. The second term is tantamount to the matrix element of 
the entangler operator K̃ in the coherent state basis while the 
first term L[�,�; u] is pure geometric; it is indeed a Berry phase 
that describes how the quantum entanglement is created along 
the cMERA flow. Using the expressions (6), (8) and (10), it can 
be shown that L[�,�; u] = 〈� |K̃(u)| �〉, so Seff[�,�] totally ac-
counts for the quantum fluctuations along the cMERA flow and can 
be written as,

Seff[�,�] = i

uF∫
uIR

du dk
[
�k(u) ∂u�k(u) − �k(u) ∂u�k(u)

]

= −2

uF∫
uIR

du dk
[
�k(u) ∂u�k(u)

]
. (15)

3 We also must note that the transition amplitude between two different co-
herent states (7) is given by 〈�′| �〉 = exp

[−1/2 ∫ dk
( | �k(u′)|2 + | �k(u)|2 −

2 �k(u′) �k(u) )].



Download English Version:

https://daneshyari.com/en/article/1850339

Download Persian Version:

https://daneshyari.com/article/1850339

Daneshyari.com

https://daneshyari.com/en/article/1850339
https://daneshyari.com/article/1850339
https://daneshyari.com

