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Using a relation between the thermodynamics of local horizons and the null energy condition, we 
consider the effects of quantum corrections to the gravitational entropy. In particular, we find that the 
geometric form of the null energy condition is not affected by the inclusion of logarithmic corrections to 
the Bekenstein–Hawking entropy.
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1. Introduction

The null energy condition (NEC) requires that, for any null vec-
tor vμ at any point in spacetime,

Tμν vμvν ≥ 0 . (1)

This condition plays a critical role in classical general relativity, 
being used in proofs of the singularity theorems [1] as well as in 
black hole thermodynamics [2]. Expressed in the form of (1), the 
NEC appears as a property of matter, since it is defined in terms 
of the matter energy–momentum tensor. But even in some classi-
cal limit, quantum field theory, our best framework for describing 
matter, does not appear to have a consistency requirement of the 
form of (1), at least when matter is considered in isolation without 
coupling to gravity.

A clue to the origin of the null energy condition comes from 
its role in general relativity. Instead of being a property purely of 
matter, perhaps the null energy condition is really a property of a 
combined theory of matter and gravity. In this context, Einstein’s 
equations imply a different, though equivalent, form of the NEC,

Rμν vμvν ≥ 0 , (2)

where Rμν is the Ricci tensor. Written in this way, the NEC can be 
interpreted as a constraint on spacetime geometry, rather than as 
a constraint on matter. Indeed, it is this geometric form of the null 
energy condition, known as the Ricci or null convergence condi-
tion, that is ultimately invoked in gravitational theorems, because 
it is the Ricci tensor that appears in the Raychaudhuri equation. 
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Thus, if (2) could be derived directly, we could uphold all the grav-
itational theorems that otherwise rely on the so-far-unprovable (1).

Recently, it has been shown that precisely this condition can be 
derived from string theory [3], which, indeed, is a combined theory 
of matter and gravity; the NEC arises essentially as the spacetime 
interpretation of the Virasoro constraint on the worldsheet. But re-
markably, the NEC in its geometric form, (2), can also be derived 
in a completely different way: as a consequence of the second law 
of thermodynamics [4]. Specifically, one assumes there exists some 
underlying microscopic theory obeying the laws of thermodynam-
ics, from which classical gravity emerges via some coarse-graining 
procedure.

The notion that gravity is emergent is no longer controversial. 
For example, in the AdS/CFT correspondence, quantum gravity in 
anti-de Sitter space is described by a conformal field theory dual. 
The conformal field theory does not itself contain the graviton 
among its fundamental degrees of freedom so, from the dual point 
of view, gravity as well as an extra spatial dimension are emergent 
phenomena. In this approach, gravity emerges globally. However, 
in a remarkable paper [5], Jacobson considered a local version of 
holography. The idea was to assume, in keeping with the universal-
ity of horizon entropy, that gravitational entropy can be associated 
to “local Rindler horizons”. Such local horizons exist everywhere 
because, in the vicinity of any point, spacetime is effectively flat 
and the local Minkowski space can be expressed in accelerating co-
ordinates. Jacobson then found that Einstein’s equations arise from 
the first law of thermodynamics, applied to a local Rindler hori-
zon. In the same spirit, as shown in [4], the null energy condition, 
in the form of (2), arises from the second law of thermodynamics, 
applied locally.

The string and emergent gravity derivations both consider clas-
sical matter and gravity. The natural next question is to ask 
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whether quantum effects lead to violations of the NEC. Indeed, it 
is known that the matter form of the NEC is violated when first 
order quantum effects are taken into account, e.g., by Casimir en-
ergy. Nevertheless, it is not clear that this indicates a violation in 
the Ricci convergence condition (2). To understand this, consider 
the semi-classical Einstein equations,

Gμν = 8πG〈Tμν〉 , (3)

which describe the backreaction of quantum fields on a classi-
cal background. The effect of the fluctuating quantum fields is 
captured by the renormalized expectation value of the energy–
momentum tensor 〈Tμν〉 over a particular background. The rele-
vance of 〈Tμν〉 to spacetime geometry relies on the validity of an 
equation of the form of (3), but we are not aware of any rigorous 
derivation of this equation as the semi-classical limit of a theory of 
both quantum matter and quantum geometry. Indeed, an equation 
which treats gravity classically but matter quantum-mechanically 
appears to be in some tension with the spirit of string theory in 
which matter and gravity are treated in a unified manner. In prin-
ciple 〈Tμν〉 can be derived from an effective action Seff(gμν) de-
scribing the quantum matter fields propagating on the background 
metric gμν . In that case, generally one finds that 〈Tμν 〉 will de-
pend on higher-curvature terms (see, e.g., [6]). The field equations, 
therefore, will in general include higher-curvature corrections to 
Einstein’s equations, severing the link between the NEC as a con-
straint on matter (1) and the NEC as a constraint on geometry (2). 
Thus a violation in (1) does not imply a violation in (2), and vice 
versa.

In this note, we take a different approach. Rather than calcu-
lating 〈Tμν〉, and then trying to determine its gravitational im-
plications, the novel idea here is to directly determine Rμν vμvν

in the semi-classical theory. Specifically, we use the known form 
of the quantum-corrected version of the Bekenstein–Hawking en-
tropy [7] to obtain the Ricci convergence condition. We find that, 
if we replace the Bekenstein–Hawking entropy of a horizon with 
its one-loop generalization and apply the second law of thermody-
namics, we again arrive at exactly the Ricci convergence condition 
(2). Quantum corrections, at least of the type that contribute to 
the entropy, do not appear to alter the condition; if these were the 
only quantum corrections, then, for example, singularity theorems 
would continue to hold even in the semi-classical theory.

2. Time derivatives of entropy

In the emergent gravity paradigm, gravity emerges out of the 
coarse-graining of some more fundamental microscopic system. 
Holography suggests that the degrees of freedom of this system 
presumably live in one dimension less than the dimensionality 
of spacetime. In particular, we will assume that classical grav-
ity in spacetime emerges in some suitable thermodynamic limit 
of the underlying system, such that the coarse-grained entropy of 
the dual system corresponds to the local Bekenstein–Hawking en-
tropy of a null congruence, as defined in the next section. (We 
emphasize that the thermodynamic matter system we will have 
in mind will always be this dual system rather than any matter 
that may live within spacetime.) Little is known about this micro-
scopic theory. Nevertheless, a few general remarks can be made. 
Here we will review the discussion in [4]. Consider a finite thermo-
dynamic system and let Smax be its maximum coarse-grained en-
tropy. Broadly, there are two kinds of thermal systems: those that 
are at thermodynamic equilibrium, and those that are approach-
ing equilibrium. For systems already at equilibrium, S = Smax, and 
Ṡ, ̈S = 0.

For systems approaching equilibrium, S < Smax and the sec-
ond law says that Ṡ ≥ 0. We will also be interested in the second 

derivative of the entropy. Now, since the entropy tends to a finite 
maximum value as it approaches thermal equilibrium, and since 
Ṡ ≥ 0, it seems intuitively reasonable that the time derivative of 
entropy will be a decreasing function of time, so that S̈ ≤ 0. This 
inequality holds for a great many systems of interest. For example, 
consider a gas diffusing in 3+1 dimensions. Starting with an ini-
tial Gaussian density profile ρ(r, 0) ∼ e−r2/2, the diffusion equation 
gives the density profile at later times:

ρ(r, τ ) = 1

2 (π (1 + 2Dτ ))3/2
exp

(
− r2

2 (1 + 2Dτ )

)
, (4)

where D is the diffusion constant. A straightforward calculation 
then yields the entropy:

S(τ ) = −
∫

dV ρ lnρ ∼ 3

2
ln(1 + 2Dτ ) . (5)

It is easy to verify that S̈ = −(2/3) Ṡ2, from which we see that

S ≥ 0, Ṡ ≥ 0, S̈ ≤ 0 , (6)

at all times.
As another example, consider a system of N macrostates. Since 

classical phase space trajectories are typically chaotic, the dynam-
ics can be described probabilistically after a few Lyapunov times. 
Assuming the ergodic hypothesis, the probability distribution can 
be taken to be uniform over all microstates. Then a short argu-
ment [4] yields

S(t) ≈ Smax(1 − e−kt) , (7)

where k is some constant with units of inverse time, and Smax is 
the maximum entropy of the system, corresponding to the largest 
macrostate. This form of the entropy also satisfies (6) for all times. 
In particular, S̈ < 0.

In fact, the non-positivity of S̈ can be proven quite gener-
ally [9] using Onsager theory, at least for a very broad class of 
near-equilibrium systems approaching equilibrium. Near equilib-
rium, the time-derivative of a density fluctuation obeys a linear 
Onsager relation:

δρ̇ = L̂δρ . (8)

Onsager argued on rather general grounds that whenever certain 
time-reversibility properties are satisfied, the matrix L̂ is symmet-
ric [8]. From this one can show [9] that S̈ ≤ 0. That is, when L̂
is symmetric, as is generally the case, then a sufficient condition 
for the non-positivity of S̈ is that the system be near equilibrium; 
for such systems (6) apply. This is a sufficient condition but, as the 
examples above illustrate, not a necessary one; S̈ can even be non-
positive away from equilibrium. Henceforth, we will assume that 
conditions (6) are indeed satisfied by the microscopic dual theory 
of gravity.

3. Thermodynamic origin of the null energy condition

Let us now translate these conditions on entropy to spacetime. 
The idea in the emergent gravity paradigm is to associate an un-
derlying non-gravitational system, presumably living in one dimen-
sion less, such that the coarse-grained entropy of the microscopic 
system accounts for the Bekenstein–Hawking entropy. Now, the 
universality of the Bekenstein–Hawking entropy formula, derived 
originally for black hole horizons, suggests that it really counts 
gravitational degrees of freedom. This led Jacobson to associate 
gravitational entropy locally to local Rindler horizons, thereby ob-
taining Einstein’s equations from the Clausius relation. In a similar 
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