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In the framework of vector model of spin, we discuss the problem of a covariant formalism [35]
concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced 
non-commutativity of a position accounts the discrepancy on the classical level, without appeal to the 
Dirac equation and Foldy–Wouthuysen transformation.
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1. Introduction

In series of previous works [1–4] we developed a Poincare-
invariant variational formulation describing particle with spin. This 
classical model provides a unified description of both Frenkel and 
BMT equations [5]. The latter are considered as a basic tool in 
the analysis of the polarization precession measurements [6]. In 
[7] we extend the variational formulation to the general relativity, 
where the classical models of a spinning particle are widely used 
to describe a rotating body in pole-dipole approximation [8–16]. 
Another possible application can be related with the kinetic the-
ory of chiral medium, where, in the regime of weak external 
fields and weak interactions between spinning (quasi)-particles, 
each particle can be considered as moving along a classical tra-
jectory [17].

For variational formulations provide a striating point to the 
canonical quantization [18], they have incredible theoretical im-
portance connecting classical and quantum descriptions of nature. 
Canonical quantization of the free relativistic spinning particle 
(within our variational formulation, [19]) leads to the positive-
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energy part of the Dirac equation in the Foldy–Wouthuysen rep-
resentation. It also identifies [19] the non-commutative Pryce’s 
d-type center of mass operator1 as the quantum observable which 
corresponds to the classical position variable. Non-commutativity 
of (physically meaningful) position operators for relativistic spin-
ning particles was noticed already by Pryce [20]. He shown that 
coordinates of the relativistic center-of-mass have to obey non-
trivial Poisson brackets. As a result, the corresponding quantum 
observables do not commute. Therefore a physically meaningful 
position operators of a spin-1/2 should be non-commutative.

Recent theoretical studies revive Snyder’s attempts [21] to solve 
fundamental physical problems by introducing non-commutativity 
of the space [22]. It is believed that this fundamental non-
commutativity may be important at Plank length scale λP . Exten-
sive studies of non-commutativity cover both classical and quan-
tum theories, as well relativistic and non-relativistic situations. 
Postulating non-commutative deformation of position operators 
[31] one can study physical consequences and estimate possible 
effects. Calculations of the hydrogen spectrum corrections strongly 
limit possible non-commutativity of coordinate parameters in the 
Dirac equation [26–30].

1 See also [32], where the same result was obtained for the classical particle with 
anticommuting spin variables.
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In the present work we will study effects of a natural non-
commutativity of Pryce’s d-type center of mass (at both classi-
cal and quantum levels) in the description of electron interacting 
with an electromagnetic background. Our considerations extend 
results of [19] towards a quantization of interacting spinning par-
ticle.

In the free theory, different candidates for the position op-
erator are almost indistinguishable. All these operators obey the 
same Heisenberg equations (uniform rectilinear motion), and the 
difference in their expectation values is of Compton wave length 
order, λC . In the interacting case, the problem of the identifi-
cation of quantum position observables becomes more compli-
cated.2

Fleming [25] noted:

“The simplest form of interaction is that due to a static potential 
which may be expressed in terms of the position operator of the 
particle. For a relativistic particle, however, the important question 
arises of which position operator should be used. The conventional 
approach, in which the position operator is assumed to be local, forces 
the choice of the center of spin.”3

He also observed, that a formal substitution of Pryce d-type op-
erator into the potential leads to some reasonable corrections:

“The first correction term to a spherically symmetric local potential 
will be recognized as the spin-orbit coupling that Thomas derived 
many years ago as a consequence of classical relativity and which 
appears in the nonrelativistic limit of the Dirac equation for spin par-
ticles.”

Analogous situation was observed in general relativity, [35,
37–39] where a formal substitution of a non-local position vari-
able into potential results in correct equations of motion for the 
spinning particle. Restricting ourselves to the case of special rel-
ativity, in the present work we provide some theoretical grounds 
for such substitution.

The paper is organized as follows. In the first section we 
present general considerations of the structure of classical and 
quantum Hamiltonians for a spinning particle. In the second sec-
tion we give a brief description of the vector model for the clas-
sical description of a relativistic spinning particle. In the third 
section we will realize classical algebra of Dirac brackets by quan-
tum operators in the case of a stationary electro-magnetic back-
ground. This realization will deform free Foldy–Wouthusen Hamil-
tonian and at low energies will give Pauli Hamiltonian with correct 
spin-orbital interaction. In the conclusion we discuss obtained re-
sults.

2. Model independent discussion of the quantum and classical 
Hamiltonians of a spinning particle

From quantum point of view, at low energies an electron inter-
acting with a background electromagnetic field is described by the 

2 Another related problem is in the identification of spin operator, since a change 
of the center of mass definition leads to the modification if the spin definition. 
[24] compares Pauli, Foldy–Wouthuysen, Czachor, Frenkel, Chakrabarti, Pryce, and 
Fradkin–Good spin operators in different physical situations and concluded that in-
teraction with electromagnetic potentials allows to distinguish between various spin 
operators experimentally.

3 Fleming calls the Newton–Wigner position operator as the center of spin, while 
Pryce d-type operator is called as the center of mass.

two-component Schrödinder equation. Pauli Hamiltonian4 includes 
spin-orbital and Zeeman interactions

Ĥ ph = 1

2m
(p̂ − e

c
A)2 − e A0 + e(g − 1)

2m2c2
Ŝ[p̂ × E] − eg

2mc
BŜ

= Ĥcharge + Ĥspin−em . (1)

Gyromagnetic ratio g is a coupling constant of spin with an elec-
tromagnetic field. In principle, in non-relativistic theory one can 
expect different coupling constants for the third and the fourth 
terms of the Hamiltonian. Experimental observations of the hydro-
gen spectrum lead to the factor g − 1 in the third term and to the 
factor g in the last term. Thus, Hamiltonian explains Zeeman effect 
and reproduces fine structure of the energy levels of the hydrogen 
atom. This Hamiltonian follows also from the non-relativistic limit 
of the Dirac equation in the Foldy–Wouthuysen representation [18,
36].

From classical point of view, models of spinning particles are 
based on a Lagrangian or Hamiltonian mechanics, both in the rela-
tivistic and non-relativistic regime [23]. In a covariant formulation, 
the spin part of the Hamiltonian describing an interaction between 
spin S and electromagnetic field reads

Hspin−em−cov ∼ eg

2m2c2
S[p × E] − eg

2mc
BS . (2)

We emphasize that the expression (2) follows from the analysis of 
all possible terms in covariant equations of motion and thus is a 
model-independent [35]. It can also be predicted from symmetry 
considerations on the level of a Hamiltonian. For instance, if we 
take the Frenkel spin-tensor Sμν , the only Lorentz-invariant com-
bination that could give the desired terms is Fμν Sμν = 2Ei Si0 +
ε ijk Si j Bk (see our notations in Appendix).

For the classical gyromagnetic ratio g = 2, the classical spin-
orbital interaction in (2) differs by the famous and troublesome 
factor5 of 1

2 from its quantum counterpart in (1). It seems quanti-
zation of Hspin−em−cov will not reproduce quantum behavior given 
by Ĥspin−em . The issue about this difference was raised already in 
1926 [34] and still remains under discussion [35].

In principle, Hamiltonian Hspin−em can be obtained, if one im-
pose a non-covariant supplementary condition on spin, 2Si0 p0 +
Sij p j = 0, where p0 = −mc in the non-relativistic limit. On a first 
glance, any covariant spin-supplementary condition [8,34,42–44]
would give Hspin−em−cov and the discrepancy factor of 1

2 .
In the next section we study this issue in the framework of 

vector model of a spinning particle [4]. We show that the vector 
model provides an answer on a pure classical ground, without ap-
peal to the Dirac equation. In a few words, it can be described as 
follows. The relativistic vector model involves a second-class con-
straints, which should be taken into account by passing from the 
Poisson to Dirac bracket. The emergence of a higher non-linear
classical brackets that accompany the relativistic Hamiltonian (2)
is a novel point, which apparently has not been taken into account 
in literature. If we pretend to quantize the model, it is desirable 
to find a set of variables with the canonical brackets. The relativis-
tic Hamiltonian (2), when written in the canonical variables, just 
gives (1).

4 We will write quantum Hamiltonians and other operators using the hat, the 
same observables without the hat correspond to the classical theory. Thus (1) de-
fines also classical Pauli-like Hamiltonian.

5 This factor is often referred to Thomas precession [33]. We will not touch this 
delicate and controversial issue [34,40] since the covariant formalism automatically 
accounts the Thomas precession [41].
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