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The theorem which says that helicity is the conserved quantity associated with the duality symmetry 
of the vacuum Maxwell equations is proved by viewing electromagnetism as an infinite dimensional 
symplectic system. In fact, it is shown that helicity is the moment map of duality acting as an SO(2)

group of canonical transformations on the symplectic space of all solutions of the vacuum Maxwell 
equations.
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1. Introduction

The usual electromagnetic action in the vacuum,1

S = −1

4

∫
M

Fμν F μν d4x , (1.1)

suffers from well-known nevertheless inconvenient defects, namely 
the non-invariance of the Lagrange density under various symme-
try transformations and the consequent non-symmetric form of its 
energy-momentum tensor, requiring to resort to various “improve-
ments” [1,2].2 In particular, while the vacuum Maxwell equations 
are invariant w.r.t. duality transformations,

F �→ F̂ = cos θ F + sin θ � (F ), (1.2)

for any real θ (where F = 1
2 Fμνdxμ ∧ dxν and �(F ) =

1
4 εμνρσ F ρσ dxμ ∧ dxν is the Hodge dual electromagnetic field 
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1 Integration is performed over Minkowski spacetime, M , endowed with metric 
g = gμν dxμdxν of signature (+, −, −, −). Let us stress that we will content our-
selves with a special relativistic treatment of duality, although our main results 
spelled out in the next sections clearly hold true (with minor modifications) in a 
fixed gravitational background.

2 We refer to, e.g., [13] for a geometric standpoint associated with the principle 
of general covariance, enabling us to circumvent these difficulties.

strength), the Lagrange density in (1.1) is not invariant. The ap-
parent contradiction can be resolved by observing that a duality 
rotation (1.2) changes the Lagrange density by a mere surface 
term. It is therefore a symmetry of the action [2,3] and generates 
therefore, according to the Noether theorem, a conserved quan-
tity identified here as the optical helicity [4]. The proof given in 
[4] is rather laborious, though, due to the complicated behavior 
of the vector potential and the subsequent use of the Hertz vec-
tor — a rather subtle, non-gauge-invariant tool. The treatment in 
[3] is also quite involved.

Another proposition [2,5,7] is to embed the Maxwell theory 
into a manifestly duality-symmetric one for which Noether’s theo-
rem yields a seemingly different expression, namely,

χCS = 1

2

∫
R3

(A · B − C · E)d3r (1.3)

à la Chern–Simons, where A and C are vector potentials for the 
magnetic and the electric fields, ∇ × A = B and ∇ × C = −E , re-
spectively. It is worth noting that the second term in Eq. # (14) of 
[4] and, respectively, in Eq. # (2.9) of [3], both represent the vec-
tor potential for the dual field strength — a fact not recognized by 
none of these authors. See [2,6,7] for comprehensive presentations.

In the first term in (1.3) we recognize the (magnetic) helicity, 
χmag = 1

2

∫
A · B d3r widely studied in (magneto)hydrodynamics 

[8], where it measures the winding of magnetic lines of force 
and/or fluid vortex lines, respectively. It is worth stressing that the 
magnetic helicity alone is not a constant of the motion in general, 
and the clue leading to (1.3) is that its non-conservation,
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d

dt
χmag = −

∫
R3

E · B d3r, (1.4)

is precisely compensated by that of the second term [6]. A remark-
able fact is that (1.3) combines two Chern–Simons invariants [9], for 
both the electromagnetic and its dual field.

Duality and helicity have attracted considerable recent atten-
tion, namely in optics [2,7,10] and in heavy ion physics [11]. Our 
own interest stems from studying the helicity of semiclassical chi-
ral particles [12].

In this Note we explain the duality and helicity from yet an-
other viewpoint, which bypasses Lagrangians and gauge fixing alto-
gether. Our clue is to view the set of solutions of electromagnetism 
as (an infinite-dimensional) symplectic space [14–16].

2. Electromagnetism in the symplectic framework

In the framework of Hamiltonian mechanics [14] one works 
with manifolds endowed with a closed two-form ω. If dim ker(ω)

has constant but nonzero dimension, ω is called presymplectic; 
if its kernel is zero dimensional, it is called symplectic. In the 
physical applications we have in mind, we start with a manifold 
such that (V, ω) is presymplectic and is referred to as an “evo-
lution space”, where the dynamics takes place. The characteristic 
leaves which integrate ker(ω) are identified with the motions of 
the system. The quotient of V by the characteristic foliation of ω, 
namely M = V/ ker(ω), is therefore endowed with a symplectic 
two-form 
, whose pull-back to V is ω. Then (M, 
) is what has 
been called the “space of motions” in [14]. Crnkovič and Witten [15]
call it the “true phase space”.

The next ingredient is a Lie group G of canonical transforma-
tions, i.e., of diffeomorphisms of V preserving the two-form ω. 
Denote by g the Lie algebra of G , and by ZV the infinitesimal ac-
tion (fundamental vector field) on V associated with Z ∈ g.

We thus have L ZV ω = 0 so that ω(ZV , · ) is a closed one-form 
for all Z ∈ g. We now say that J : V → g∗ is a moment map for 
(V, ω, G) if the stronger condition

ω(ZV , · ) = −d( J · Z) (2.1)

holds for all Z ∈ g.3

If the equations of motion are given by ker(ω), as it happens in 
the mechanics of finite dimensional systems [14] and, as we will 
prove below, also for Maxwell’s electromagnetism, then J clearly 
descends to the space of motions, M = V/ ker(ω), as the Noethe-
rian quantity associated with the symmetry group G: indeed J · Z
is a constant of the motion for all Z ∈ g.

Below we boldly extend this framework to the infinite dimen-
sional “manifold” M which consists of all solutions of the vacuum 
Maxwell equations modulo gauge transformations we endow with 
a symplectic structure.4

Let us show how all this comes about. Our first aim is to trans-
late the usual variational approach into a symplectic language. The 
actual physical variable is the potential one-form A = Aμ dxμ lo-
cally defined by F = dA.5 Then the variation of the action (1.1)
with respect to a variation δA = δAμ dxμ of the 4-potential is

3 For each point x of V , the quantity J (x) belongs to the dual g∗ of the Lie 
algebra g, and contracting with Z ∈ g yields a function x �→ J (x) · Z on V .

4 A rigorous treatment of this infinite-dimensional differentiable structure would 
require the use of, e.g., diffeology [17], especially when dealing with differential 
forms on this “diffeological space”.

5 One-forms and vector fields are identified by lifting and lowering indices using 
the Minkowski metric.

δS =
∫
M

[
∂ν(F μνδAμ) + (∂μF μν)δAν

]
d4x . (2.2)

Assuming that the fields drop off sufficiently rapidly at infinity — 
or that the variations δA have compact support — the surface term 
can be dropped, allowing us to deduce the vacuum Maxwell equa-
tions ∂[μ Fνρ] = 0 and ∂μ F μν = 0, also written as

dF = 0 and d � (F ) = 0. (2.3)

Denote by V the space of one-forms A of Minkowski space M
whose associated field strength, F = dA, is a solution of (2.3). We 
contend that V , which can be thought of as an infinite-dimensional 
manifold (affine space), is an “evolution space” for the Maxwell 
theory.

Firstly, a variation of a solution, δA, is a “tangent vector” to V
at A ∈ V if A + δA is still a solution of the field equations which 
vanishes at spatial infinity (as A does). Since the associated field 
strength is F + δF , where δF = d(δA), it follows that δF also satis-
fies the Maxwell equations, d(δF ) = 0 and d � (δF ) = 0.

Now, adapting Souriau’s procedure in [14], Sec. 7, to field the-
ory, we define a symplectic form on the space of all solutions of 
the linear system (2.3). To this end, we consider the action (1.1)
by integrating over the domain M ′ = [t0, t1] × 
 ⊂ M defined by 
a Cauchy 3-surface 
 with arbitrary dates t0 and t1 	= t0, where t
is some given time-function. When F is a solution of the Maxwell 
equations, the variation vanishes, δS = 0, and therefore Eq. (2.2)
boils down to

0 =
∫
M

∂ν(F μνδAμ)d4x =
∫

1

�(F (δA)) −
∫

0

�(F (δA)) ,

where 
i = {ti} × 
 for i = 0, 1, implying that the integral does 
not depend on the choice of t0 and t1; the one-form6

α(δA) =
∫



�(F (δA)) = −
∫



�(F ) ∧ δA (2.5)

is therefore well-defined; it is the Cartan one-form. The ex-
pression (2.5) represents the flux of the vector field F (δA) =
(F μνδAμ)∂ν across the Cauchy surface 
. Calculating the exte-
rior derivative, ω = dα, via dα(δA, δ′ A) = δ(α(δ′ A)) − δ′(α(δA)) −
α([δ, δ′]A), we find

ω(δA, δ′ A) =
∫



δA ∧ �(δ′ F ) − δ′ A ∧ �(δF ). (2.6)

The two-form (2.6) corresponds exactly to that given by Eq. # (23) 
in [15].

From this point on, we do not use any Lagrangian; the start-
ing point of all our subsequent investigations will be the two-form 
(2.6).

Let us now show that (V, ω) becomes a formal presymplectic 
space. To that end, let us compute its characteristic distribution. 
We thus must determine the kernel of ω, i.e., all variations δA of a 
solution A ∈ V such that ω(δA, δ′ A) = 0 for all δ′ A, subject to the 
constraint δ′(d � (F )) = 0 to comply with the field equations. Using 
a Lagrange multiplier, f , we look for all solutions δA of

6 In a coordinate system where the metric is g = dt2 − dx2 and 
 given by t =
const, Eq. (2.5) reads

α(δA) =
∫

F μνδAμ∂νt d3x. (2.4)
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