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Gravitational instability in classical Jeans theory, General Relativity, and modified gravity is considered. 
The background density increase leads to a faster growth of perturbations in comparison with the 
standard theory. The transition to the Newtonian gauge in the case of coordinate dependent background 
metric functions is studied. For modified gravity a new high frequency stable solution is found.
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1. Introduction

The instability of self-gravitating systems was first investigated 
by Jeans [1] in non-relativistic Newtonian gravity. It was extended 
to General Relativity (GR) by Lifshitz [2] and nowadays it is widely 
used in cosmology to study the rise of density perturbations in the 
expanding universe [3–6]. The original Jeans approach is based on 
the Poisson equation

�Φ = 4πG�, (1.1)

which is not satisfied in the zeroth order approximation, because 
the potential Φ is considered as a first order quantity, while the 
matter density � = �b + δ� includes zero (background) and first 
order terms. This problem is discussed in several textbooks, as e.g. 
in the aforementioned references [3–6]. It is also noted in an early 
paper indicated to us by an anonymous referee [7], where the au-
thor writes: “In (1.1) the density and pressure are supposed to be 
uniform throughout the gas. In fact, however, if gravitation is taken 
into account the equation of hydrodynamic equilibrium has no so-
lution for a finite uniform mass.”

To cure this shortcoming Mukhanov [4] suggested adding an 
antigravitating substance, such as e.g. vacuum-like energy, which 
would counterbalance the gravitational attraction of the back-
ground, so that Eq. (1.1) would be satisfied at zeroth order. Al-
ternatively in Ref. [8] the authors assumed that the background 
density is zero, so that Eq. (1.1) becomes a relation between first 

* Corresponding author.
E-mail addresses: arbuzova@uni-dubna.ru (E.V. Arbuzova), dolgov@fe.infn.it

(A.D. Dolgov), reverberi@fe.infn.it (L. Reverberi).

order terms. This problem is absent in cosmology, where the ze-
roth order background equations are satisfied. They are the usual 
Friedmann equations in a homogeneous, isotropic universe, see for 
instance Refs. [3–7].

In this paper we take a different approach to the classical Jeans 
problem, assuming that Eq. (1.1) is valid for zeroth order terms 
so the solution of the equations of motion leads to time depen-
dent background energy density and gravitational potential. These 
evolve with time in accordance following the equations of mo-
tion. The characteristic timescale of variation of these quantities is 
close to the Jeans time [both are essentially the gravitational time 
tg ∼ (G�)−1/2], so the development of the Jeans instability goes 
faster than in the standard theory, where such effect is not taken 
into account. This problem is studied in Section 2.

The treatment of the Jeans instability in General Relativity starts 
from the Einstein equations:

Gμν ≡ Rμν − 1

2
gμν R = 8πGTμν ≡ T̃μν. (1.2)

These equations automatically include the equations of motion 
of matter, namely the continuity and Euler equations. On the 
other hand the equations of motion of matter can be equiva-
lently obtained from the conditions of covariant conservation of 
the energy–momentum tensor

DμT μ
ν = 0, (1.3)

where Dμ is the covariant derivative in the gravitational field un-
der scrutiny. Usually, it is technically more difficult to derive the 
Euler and continuity equations from (1.2) because in this case one 
has to include the terms proportional to the square of the Christof-
fel symbols in the expression for the Ricci tensor.
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We consider the problem of gravitational instability for an ini-
tially spherically symmetric distribution of matter which generates 
a Schwarzschild-like background gravitational field. In contrast to 
the usually considered cosmological case, the background metric 
is not only a function of time but also a function of space coor-
dinates. It leads to difficulties in imposing the Newtonian gauge 
condition. The problem of gauge fixing and the instability in a co-
ordinate dependent background are studied in Section 3.

The final part of the paper, Section 4, is devoted to gravita-
tional instability in F (R) modified gravity theories. In cosmology 
this problem was considered in several works for different forms 
of F (R), see e.g. Refs. [9–11]. We thank an anonymous referee for 
indicating several relevant papers [9] to us.

An analysis of the Jeans instability for stellar-like objects in 
modified gravity was performed in Refs. [12,8]. In these works 
a perturbative expansion of F (R) was performed either around 
R = 0 or R = Rc , where Rc is the present cosmological curvature 
scalar. In our work we expand F (R) around the curvature of the 
background metric Rm , which is typically much larger than Rc .

2. Jeans instability in Newtonian theory with space and time 
dependent background

We consider a spherically symmetric cloud of particles with 
initially vanishing pressure and velocities, and study the classical 
non-relativistic Jeans problem in Newtonian gravity. The essential 
equations are the well known Poisson, Euler, and continuity equa-
tions:⎧⎨⎩

�Φ = 4πG�, (a)

∂t(�v) + �(v∇)v + ∇ P + �∇Φ = 0, (b)

∂t� + ∇(�v) = 0. (c)
(2.1)

It has been already mentioned in the Introduction that the 
problem with these equations, as described in the book by Zel-
dovich and Novikov [3], is that a time independent � is not a 
solution to these equations. To avoid this problem the authors sug-
gested studying solutions in the cosmological background, while 
Mukhanov [4] proposed to introduce some repulsive force. Instead 
we consider the time dependent problem taking as initial value a 
homogeneous distribution � = const. inside a sphere with radius 
rm , while outside this sphere � = 0. The initial values of particle 
velocities and pressure are taken to be zero and the potential Φ is 
supposed to be a solution of the Poisson equation (2.1)(a):

Φ0(r > rm) = −MG/r, Φ0(r < rm) = 2πG�0r2/3 + C0,

(2.2)

where C0 = −2πG�0r2
m is chosen such that the potential is contin-

uous (the value of C0 is not important for us), and the total mass 
of the gravitating sphere is M = 4π�0r3

m/3.
In what follows we will be interested in the internal solution 

for r < rm . Now we can find how the background quantities �, v , 
and P evolve with time at small t . From Eq. (2.1)(b) it follows that:

v1(r, t) = −∇Φ0t = −4πG�0rt/3. (2.3)

From the continuity equation (2.1)(c) we find

�1 = 2π

3
G�2

0t2 or �b(t, r) = �0 + �1 = �0

(
1 + 2π

3
G�0t2

)
.

(2.4)

It is interesting that � rises with time but remains constant in 
space. Because of the homogeneity of � the pressure remains zero, 
i.e. P1 = 0.

The time variation of the background potential is found us-
ing (2.1)(a):

Φb(r, t) = Φ0 + Φ1 = 2π

3
Gr2�0

(
1 + 2π

3
G�0t2

)
. (2.5)

Now we can study the evolution of perturbations over this 
time-dependent background. We proceed as usual, writing � =
�b(r, t) + δ�, Φ = Φb(r, t) + δΦ , v = v1(r, t) + δv , and δP = c2

s δ�, 
where cs is the speed of sound. Here all δ-quantities are infinites-
imal and are neglected beyond first order. In what follows we also 
neglect the products of small sub-one quantities (i.e. �1 etc) with 
δ’s. This significantly simplifies the calculations, while of course 
the results do not change significantly. We find:⎧⎨⎩

�(δΦ) = 4πGδ�, (a)

∂tδv + ∇δΦ + δ�/�0∇Φb + ∇δP/�0 = 0, (b)

∂tδ� + �0∇(δv) = 0. (c)
(2.6)

Eq. (2.6)(b) contains the term (δ�/�0)∇Φb which explicitly 
depends on the coordinate r through the background potential 
|∇Φb| = 4πGr�0/3. We estimate this term substituting instead of 
r its maximum value rm . To see if this term is essential, let us take 
the Fourier transform of the last term in Eq. (2.6)(b):∫

d3k

(2π)3

∇δP

�0
e−iλt+ikr ∼ kc2

s
δ�(λ,k)

�0
. (2.7)

So we have to compare kc2
s with 4πG�0/3. Evidently,

4πGrm�0/3 = rg

2r2
m

, (2.8)

where rg = 2GM is the gravitational (Schwarzschild) radius and M
is the total mass of the spherical cloud under scrutiny. If k is of 
the order of the Jeans wave number:

k ∼ k J =
√

4πG�0

cs
, (2.9)

we can neglect the r-dependent term (δ�/�0)∇Φb in comparison 
to ∇δP/�0 for cs >

√
2rg/(3rm). There is quite a large volume of 

the parameter space where this condition is fulfilled.
Taking the Fourier transform of Eqs. (2.6)(a)–(c) and neglecting 

the r-dependent term we obtain the eigenvalue equation:

k2(λ2 − c2
s k2 + 4πG�0

) = 0. (2.10)

For small k we find the usual exponential Jeans instability:

δ� J 1

�0
∼ exp

[
t
(
4πG�0 − c2

s k2)1/2]
. (2.11)

However, these small perturbations have the same characteristic 
rising time ∼ 1/(4πG�0)

1/2 as that of the classical rise of �1. We 
can estimate the impact of the rising background energy density 
on the rise of perturbations making an adiabatic approximation, 
namely replacing the exponent in Eq. (2.11) with the integral:

δ� J 2

�0
∼ exp

{ t∫
0

dt
[
4πG�b(t, r) − k2c2

s

]1/2

}
. (2.12)

where �b(t, r) is given by Eq. (2.4).
Estimating the above integral for small k we find that the en-

hancement factor δ� J 2/δ� J 1 is equal to 1.027 after a time t = tgrav , 
where tgrav = 1/

√
4πG�0, while for t = 2tgrav it is 1.23, for t =

3tgrav it is 1.89, and for t = 5tgrav it is 11.9. Note that to derive 
(2.11) and (2.12) we assumed that t < tgrav , so we should not treat 
these factors as numerically accurate; still, we can interpret them 
as an indication that the rise of fluctuations is indeed faster than 
in the usual Jeans scenario.
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