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The background density increase leads to a faster growth of perturbations in comparison with the
standard theory. The transition to the Newtonian gauge in the case of coordinate dependent background
metric functions is studied. For modified gravity a new high frequency stable solution is found.
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1. Introduction

The instability of self-gravitating systems was first investigated
by Jeans [1] in non-relativistic Newtonian gravity. It was extended
to General Relativity (GR) by Lifshitz [2] and nowadays it is widely
used in cosmology to study the rise of density perturbations in the
expanding universe [3-6]. The original Jeans approach is based on
the Poisson equation

A® =47 Go, (1.1)

which is not satisfied in the zeroth order approximation, because
the potential @ is considered as a first order quantity, while the
matter density 0 = gp + So includes zero (background) and first
order terms. This problem is discussed in several textbooks, as e.g.
in the aforementioned references [3-6]. It is also noted in an early
paper indicated to us by an anonymous referee [7], where the au-
thor writes: “In (1.1) the density and pressure are supposed to be
uniform throughout the gas. In fact, however, if gravitation is taken
into account the equation of hydrodynamic equilibrium has no so-
lution for a finite uniform mass.”

To cure this shortcoming Mukhanov [4] suggested adding an
antigravitating substance, such as e.g. vacuum-like energy, which
would counterbalance the gravitational attraction of the back-
ground, so that Eq. (1.1) would be satisfied at zeroth order. Al-
ternatively in Ref. [8] the authors assumed that the background
density is zero, so that Eq. (1.1) becomes a relation between first
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order terms. This problem is absent in cosmology, where the ze-
roth order background equations are satisfied. They are the usual
Friedmann equations in a homogeneous, isotropic universe, see for
instance Refs. [3-7].

In this paper we take a different approach to the classical Jeans
problem, assuming that Eq. (1.1) is valid for zeroth order terms
so the solution of the equations of motion leads to time depen-
dent background energy density and gravitational potential. These
evolve with time in accordance following the equations of mo-
tion. The characteristic timescale of variation of these quantities is
close to the Jeans time [both are essentially the gravitational time
tg ~ (Go)~1/?], so the development of the Jeans instability goes
faster than in the standard theory, where such effect is not taken
into account. This problem is studied in Section 2.

The treatment of the Jeans instability in General Relativity starts
from the Einstein equations:

1 ~
Guv = Ryw — 5 8uoR =8 G Ty =Ty, (12)

These equations automatically include the equations of motion
of matter, namely the continuity and Euler equations. On the
other hand the equations of motion of matter can be equiva-
lently obtained from the conditions of covariant conservation of
the energy-momentum tensor

D,T =0, (1.3)

where D, is the covariant derivative in the gravitational field un-
der scrutiny. Usually, it is technically more difficult to derive the
Euler and continuity equations from (1.2) because in this case one
has to include the terms proportional to the square of the Christof-
fel symbols in the expression for the Ricci tensor.
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We consider the problem of gravitational instability for an ini-
tially spherically symmetric distribution of matter which generates
a Schwarzschild-like background gravitational field. In contrast to
the usually considered cosmological case, the background metric
is not only a function of time but also a function of space coor-
dinates. It leads to difficulties in imposing the Newtonian gauge
condition. The problem of gauge fixing and the instability in a co-
ordinate dependent background are studied in Section 3.

The final part of the paper, Section 4, is devoted to gravita-
tional instability in F(R) modified gravity theories. In cosmology
this problem was considered in several works for different forms
of F(R), see e.g. Refs. [9-11]. We thank an anonymous referee for
indicating several relevant papers [9] to us.

An analysis of the Jeans instability for stellar-like objects in
modified gravity was performed in Refs. [12,8]. In these works
a perturbative expansion of F(R) was performed either around
R =0 or R =R, where R, is the present cosmological curvature
scalar. In our work we expand F(R) around the curvature of the
background metric Ry, which is typically much larger than R..

2. Jeans instability in Newtonian theory with space and time
dependent background

We consider a spherically symmetric cloud of particles with
initially vanishing pressure and velocities, and study the classical
non-relativistic Jeans problem in Newtonian gravity. The essential
equations are the well known Poisson, Euler, and continuity equa-
tions:

AP =471Go, (a)
d(oV) +0(WV)V+ VP +oVd =0, (b) (21)
90 + V(ov) =0. (c)

It has been already mentioned in the Introduction that the
problem with these equations, as described in the book by Zel-
dovich and Novikov [3], is that a time independent o is not a
solution to these equations. To avoid this problem the authors sug-
gested studying solutions in the cosmological background, while
Mukhanov [4] proposed to introduce some repulsive force. Instead
we consider the time dependent problem taking as initial value a
homogeneous distribution ¢ = const. inside a sphere with radius
rm, while outside this sphere o = 0. The initial values of particle
velocities and pressure are taken to be zero and the potential @ is
supposed to be a solution of the Poisson equation (2.1)(a):

Do(r>1m) =—MG/r,  Do(r <rm) =2mGoor?/3 + Co,

(2.2)

where Cog = —21 GQorﬁ1 is chosen such that the potential is contin-
uous (the value of Cg is not important for us), and the total mass
of the gravitating sphere is M = 47TQ0T%/3.

In what follows we will be interested in the internal solution
for r < rym. Now we can find how the background quantities o, v,
and P evolve with time at small t. From Eq. (2.1)(b) it follows that:

vi(r,t) = —=V®ot = —4m Goort/3. (2.3)
From the continuity equation (2.1)(c) we find

2

2,2 2 2
QlZ?GQof or Qb(f,r)ZQo-i-Ql:Qo(l-F?GQot )

(2.4)

It is interesting that o rises with time but remains constant in
space. Because of the homogeneity of o the pressure remains zero,
ie. P4 =0.

The time variation of the background potential is found us-
ing (2.1)(a):

2w _ 5 21 5
Dp(r,t) =Po+ D1 = ?Gr ool 1+ 7Ggot . (2.5)

Now we can study the evolution of perturbations over this
time-dependent background. We proceed as usual, writing o =
op(r,t)+ 80, @ = Pp(r,t) + 8@, v=v1(r,t) + v, and §P = CSZSQ,
where cs is the speed of sound. Here all §-quantities are infinites-
imal and are neglected beyond first order. In what follows we also
neglect the products of small sub-one quantities (i.e. o1 etc) with
8’s. This significantly simplifies the calculations, while of course
the results do not change significantly. We find:

A(8D) =4 Gso, (@)
0t0V+ V3D +80/00VPy + VSP /00 =0, (b) (2.6)
030 +00V(év) =0. (c)

Eq. (2.6)(b) contains the term (80/00)V®p which explicitly
depends on the coordinate r through the background potential
|V®y| = 4m Groo/3. We estimate this term substituting instead of
r its maximum value ry,;. To see if this term is essential, let us take
the Fourier transform of the last term in Eq. (2.6)(b):

d*k VsP e _ 2 So(r. k).

— (2.7)
2m)* o Qo
So we have to compare kc2 with 477 Go/3. Evidently,
T
47 Grmoo/3 = —% (2.8)

where rg =2GM is the gravitational (Schwarzschild) radius and M

is the total mass of the spherical cloud under scrutiny. If k is of
the order of the Jeans wave number:

K~k = YATCQ (2.9)
Cs
we can neglect the r-dependent term (§0/00)V®} in comparison
to V8P/gq for cs > ,/2rg/(3ry). There is quite a large volume of
the parameter space where this condition is fulfilled.
Taking the Fourier transform of Egs. (2.6)(a)-(c) and neglecting
the r-dependent term we obtain the eigenvalue equation:

k?(A* = c2k® + 4 Goo) = 0. (2.10)

For small k we find the usual exponential Jeans instability:

8

% ~ exp[t(4m Goo —c?k2)1/2]. (211)
0

However, these small perturbations have the same characteristic
rising time ~ 1/(47w Gop)!/? as that of the classical rise of g1. We
can estimate the impact of the rising background energy density
on the rise of perturbations making an adiabatic approximation,
namely replacing the exponent in Eq. (2.11) with the integral:

t

~ exp[fdt[47rGQb(t, r)— k2c§]1/2
0
where g, (t, 1) is given by Eq. (2.4).
Estimating the above integral for small k we find that the en-
hancement factor §02/80 1 is equal to 1.027 after a time t = tgrqy,
where tgqy = 1/,/4mGQo, while for t = 2tgq, it is 123, for t =
3tgrqy it is 1.89, and for t = 5tgqy it is 11.9. Note that to derive
(2.11) and (2.12) we assumed that t < tgry, SO we should not treat
these factors as numerically accurate; still, we can interpret them
as an indication that the rise of fluctuations is indeed faster than
in the usual Jeans scenario.

JeJp)
Qo0

(2.12)
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