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Keywords:
Effective potential
Fixed points

The stability conditions of a renormalization group improved effective potential have been discussed in 
the case of scalar QED and QCD with a colorless scalar. We calculate the same potential in these models 
assuming the existence of non-perturbative fixed points associated with a conformal phase. In the case of 
scalar QED the barrier of instability found previously is barely displaced as we approach the fixed point, 
and in the case of QCD with a colorless scalar not only the barrier is changed but the local minimum of 
the potential is also changed.
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1. Introduction

The discovery of a Higgs-like particle at the CERN-LHC, and the 
fact that this particle is “lighter” than what could be expected for 
the Higgs boson in several extensions of the Standard Model (SM) 
is leading to a deeper investigation of the mass generation mecha-
nism as it is known in the SM. Many recent papers are discussing 
the Higgs mechanism under new points of view, such as the natu-
rality of the model [1–3], its stability [4–6], and studying possible 
alternatives or extensions of the model.

Several years ago the possibility that a conformal classical sym-
metry could be important in the mass generation mechanism was 
discussed by Meissner and Nicolai [7]. At that time they proposed 
an extension of the SM where the radiative symmetry breaking 
calculated with the help of the effective potential, as first sug-
gested by Coleman and Weinberg (CW) [8], was compatible with 
the experimental data then available. The example of [7] was al-
ready giving an answer to the questions of naturality and stability 
of the Higgs mechanism, and the possibility that the SM symme-
try breaking could be implemented through radiative corrections 
is still in discussion [9].

How the CW effective potential calculation is applicable and 
reliable in a realistic theory is a motive of debate. Meissner and 
Nicolai discussed the applicability of a renormalization group (RG) 
improved version of the one-loop CW effective potential in sim-
ple models [10], where the behavior of the coupling constants 
could be easily calculated. The inclusion of the coupling constants 
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evolution extends the validity range of the effective potential. One 
of the criteria for applicability of the RG improved CW effective po-
tential proposed in [10] was that the running coupling constants, 
expressed as functions of the classical field, should stay small. 
Of course, away from the origin the RG β functions will depend 
on the renormalization scheme and how the coupling is defined. 
However, we should expect the stability of the effective potential 
certainly to depend on the coupling constants RG behavior in a 
much larger range of values [11].

In the examples of classically conformal theories of [10] the 
effective potential stability is connected to ultraviolet (UV) and 
infrared (IR) barriers caused by the presence of a Landau pole 
in the QED or QCD couplings. However, the existence of a Lan-
dau pole in these couplings has been questioned, and instead of a 
pole they may present a non-perturbative fixed point. Due to the 
phenomenon of dynamical symmetry breaking in QED and QCD, 
the coupling constants may freeze after they reach a certain crit-
ical value, whereas in the QCD case, as will be discussed later, 
such critical value is even not so large. It is the effect of non-
perturbative fixed points of these types in the RG improved ef-
fective potential calculation, applied to the models of [10], that we 
want to discuss in this work. Their effect has not been discussed 
in the context of the CW potential and they may even modify the 
potential stability conditions.

In QED the non-perturbative fixed point that we referred to
above implies a critical coupling αc ≈ π/3 [12,13], where αc is the 
UV critical value of the fine structure constant (α ≡ e2/4π ). This 
behavior is a consequence of dynamical chiral symmetry break-
ing, in a mechanism similar to the fall into the Coulomb center
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for large charge [14], with a β function that is approximated 
by

βα = −2(α − αc). (1)

It is not clear whether this fixed point indeed exists, and QED al-
ready does not make sense at the physical scale of such critical 
value, which happens to be above the Planck scale. Nevertheless, 
the study of such possibility can be instructive.

On the other hand, there are many plausible evidences that 
QCD develops an infrared non-perturbative fixed point. For in-
stance, the study of dynamical mass generation in QCD indicates 
that the coupling constant may freeze in the infrared as [15,16]

ḡ2(k2) = 1

β0 ln[(k2 + 4m2
g)/Λ

2] , (2)

where β0 = (11N −2nq)/48π2 with nq quark flavors, Λ is the char-
acteristic QCD scale, and mg is a dynamically generated “effective 
mass” for the gluon, whose preferred value is mg ≈ 2Λ [15,17]. 
The IR value of Eq. (2) as well as the compilation of other IR values 
for the QCD coupling obtained in different phenomenological ap-
plications can be seen in [18], and they do not indicate an abrupt 
transition to the non-perturbative regime. We can also quote theo-
retical estimates of αs(0) through the functional Schrödinger equa-
tion, which suggest αs(0) ≈ 0.5 [19]. The infrared finite effective 
charge of QCD, in the context of Schwinger–Dyson equations, has 
also been discussed in [20] and is associated with an infrared fi-
nite gluon propagator. Actually, finite IR gluon propagators have 
been confirmed in lattice simulations [21,22], and they do lead 
to a non-perturbative IR fixed point [23]. The effect of such non-
perturbative coupling constant has not been explored in the case 
of a CW potential calculation involving QCD.

The organization of this work is the following: In Section 2 we 
discuss the RG improved potential of scalar QED in the presence 
of a non-perturbative fixed point. This section is a simple exam-
ple of what we will calculate in the more elaborated case of the 
CW potential for QCD with a colorless scalar, which is going to be 
presented in Section 3. In Section 4 we draw our conclusions.

2. CW potential in scalar QED with a fixed point

The RG improved effective potential of [10] for an ordinary 
scalar field ϕ theory with quartic self-interaction and no classical 
mass term is given by

Weff (ϕ, g, v) = ĝ1(L)ϕ4 exp

[
2

L∫
0

γ̄
(

ĝ(t)
)
dt

]
, (3)

where ĝ may indicate a set of coupling constants, v is some renor-
malization mass scale,

L ≡ ln
ϕ2

v2
, (4)

and γ̄ (ĝ) is an anomalous dimension associated with the coupling 
constants.

We will discuss the effective potential of Eq. (3) in the case of 
massless scalar QED. The scalar self-coupling and the gauge cou-
pling are respectively given by

y = g

4π2
, u = e2

4π2
, (5)

and their RG equations are

2
d y

dL
= a1 y2 − a2 yu + a3u2, 2

d u

dL
= 2bu2, (6)

Fig. 1. Evolution of the QED gauge coupling giving by Eq. (7) (dashed curve) and 
the fit of Eq. (11) (continuous curve), which assumes the existence of a non-
perturbative fixed point. For small L values the fit agrees with the perturbative 
result.

where a1 = 5/6, a2 = 3, a3 = 9 and b = 1/12. The anomalous di-
mension is γ (y, u) = cu, with c = 3/4. The solutions of Eq. (6) are

u(L) = u0

1 − bu0L
, (7)

y(L) = (a2 + 2b)

2a1
u(L) + Au(L)

2a1
tan

(
A

8b
ln u(L) + C

)
, (8)

where

A =
√

4a1a3 − (a2 + 2b)2 (9)

is a positive quantity and C is a constant chosen to satisfy 
y(0) = y0.

The RG improved effective potential at one loop is

Weff = π2ϕ4 y(L)

(1 − bu0L)2c/b
. (10)

Eq. (10) is the result obtained in [10]. This result has one striking 
difference in relation to the unimproved potential, which is the 
presence of two barriers, one related to the UV Landau pole and 
an IR one where the potential becomes unbounded from below.

Let us now suppose that the theory has a fixed point at 
αc(L) ≈ 1. Note that this would be a possibility for QED with 
fermions as discussed in Refs. [12,13], but here this is just an 
ad hoc supposition to exemplify what may happen with the ef-
fective potential in the case of a possible freezing of the coupling 
constant. We see in Fig. 1 that the critical point of the perturbative 
coupling will occur for L > 5000, while for much smaller L values 
the coupling follows Eq. (7). As a consequence, for small values 
of L we have u = e2/4π2, and at large L the coupling freezes at 
u ≈ 1/π .

The main difference between this work and previous calcula-
tions of the RG improved effective potential is the introduction of 
an interpolating coupling constant joining the perturbative to the 
non-perturbative regime. The best interpolation formula between 
these values is given by a tan−1 function. We make a fit for the 
gauge coupling assuming the RG standard solution for L < 4500, 
and interpolate it in the region 4500 < L < 5300 with a tan−1 for-
mula, such that it will be joined to the frozen value of the coupling 
for L > 5300. A fit that is reasonable from L = 0 up to L < 4000 at 
0.1% level is given by

uFit(L) = 0.105 tan−1
(

L − 5100

110

)
+ 0.165. (11)
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