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We discuss in general terms pole trajectories of resonances coupling to a continuum channel as 
some strength parameter is varied. It is demonstrated that, regardless of the underlying dynamics, the 
trajectories of poles that couple to the continuum in a partial wave higher than s-wave are qualitatively 
the same, while in case of s-waves the pole trajectory can reveal important information on the internal 
structure of the resonance. In addition we show that only molecular (or extraordinary) states appear near 
thresholds naturally, while more compact structures need a significant fine tuning in the parameters.
This study is of current relevance especially in strong interaction physics, since lattice QCD may be 
employed to deduce the pole trajectories for hadronic resonances as a function of the quark mass thus 
providing additional, new access to the structure of s-wave resonances.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

If all mesons were q̄q states then there would be no natural 
reason for poles in scattering amplitudes to occur very close to 
thresholds. At large values of Nc , the number of colors in QCD, 
all q̄q mesons become narrow with (nearly) unchanged mass [1]. 
Thus, their masses have no relation to the masses of the mesons 
to which they couple.1 Accordingly, the ρ mass is not related to 
2mπ , nor is the K ∗ mass related to mK +mπ . So the mere fact that 
the f0(980) and a0(980) appear very near K K̄ threshold is already 
reason to be suspicious that they are not simple q̄q states. The 
same applies to unusual charmonium states that have been found 
near charm–anticharm meson thresholds like the famous X(3872)

located very close to the D0 D̄0∗ threshold — for a recent review 
see [5].

On the other hand, there is good reason for “extraordinary” 
hadrons, often called hadronic molecules, to have masses close 
to thresholds [6]. In this paper we look carefully at the way that 
the manifestations of poles in scattering amplitudes change as the 
poles approach thresholds as some strength parameter is varied — 
here one may think of varying the quark masses in lattice QCD 
calculations. This has acquired a renewed interest after the tra-
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1 The same is true for a straightforward extension of tetraquarks to large Nc [2]
— in case they existed at large Nc [3] — although other possible extensions of 
tetraquarks to Nc �= 3 lead to masses that grow when Nc is increased [4].

jectory of the σ or f0(500) resonance pole as a function of the 
quark mass was predicted by us within unitarized Chiral Pertur-
bation Theory [7]. A similar trajectory as that of the σ was soon 
shown to be followed by the controversial κ or K (800) resonance 
in the isospin 1/2 scalar π K scattering partial wave, including the 
appearance of a virtual state at sufficiently large pion masses [8]. 
The subtleties of the extraction of resonance parameters from lat-
tice QCD simulations performed at a finite volume are outlined in 
detail in Refs. [9,10] and will not be discussed further here. Re-
cently the existence of such a virtual bound state at high pion 
masses has been confirmed by lattice calculations [11].

While finishing this work, we became aware of a theoretical 
study [13] of the scaling of hadron masses near an s-wave thresh-
old, showing that the bound state energy is not continuously con-
nected to the real part of the resonance energy. In this paper we 
have another look at this issue which allows us to provide vari-
ous additional, non-trivial insights. In particular, we demonstrate 
that there is a qualitative difference between the pole trajectories 
of resonances that couple to the relevant continuum channel in 
an s-wave or in a higher partial wave: As a consequence of ana-
lyticity a resonance is characterized by two poles on the second 
sheet, one located at s = sR and one located at s = s∗

R . For nar-
row resonances only one of them is close to the physical region. 
As some strength parameter is increased, the two poles start to 
approach each other. We demonstrate on general grounds below 
that while for higher partial waves the poles meet at the corre-
sponding two meson threshold, for s-waves the poles can still be 
located inside the complex plane even for the real part of the 
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pole position at or below threshold. As a consequence, s-wave-
trajectories are controlled by an additional dimensionful parameter, 
namely the value of s where the two poles meet below threshold 
which may be related to the structure of the state. In other words, 
generic trajectories of s-wave resonances do lead to poles whose 
real part of the position is below threshold, but whose imaginary 
part of the position does not vanish, before giving rise to virtual 
bound states, and then bound states, as some strength parame-
ter is varied. While this observation is in line with the findings 
of Refs. [7,14], it is in vast conflict with “common wisdom” that 
the imaginary part of a pole has to be identified with one half of 
its decaying width, for this implies that, if the “resonance mass” 
— identified with the real part of the pole position — lies below 
threshold, the pole necessarily has to lie on the real axis.

The paper is organized as follows: in the next section we dis-
cuss general properties of the poles that appear in the S-matrix, 
paying particular attention to poles that occur in partial waves 
with angular momenta higher than 0, especially to the role of the 
centrifugal barrier which is absent in the scalar partial waves. Next 
we consider the trajectories of resonance poles in the complex 
plane as a function of some strength parameter, and how they can 
become bound states. In the next section we briefly review Wein-
berg’s compositeness criterion and reformulate it in terms of the 
parameters introduced in the previous section. The possible behav-
iors are then illustrated with two models of scattering in separable 
potentials within non-relativistic scattering theory, one with a sin-
gle channel and another one in a two-channel system. In Section 4
we analyze, the realistic examples of the pole trajectories of the σ
or f0(500) scalar meson and the ρ(770) as functions of the quark 
masses, obtained from the combination of Chiral Perturbation The-
ory and a single channel dispersion relation obtained in [7]. We 
show how the generic features discussed in this paper show up in 
these two cases. In particular, we can conclude that the f0(500)

or sigma meson would have a predominantly molecular nature, if 
the pion mass were of the order of 450 MeV or higher. In the final 
section we summarize our results.

2. General properties of S-matrix poles

In this work we only consider one continuum channel. This 
implies that the S-matrix has one right hand cut, starting at 
s = (2m)2 — the so-called unitarity cut.2 As a consequence there 
are two sheets and, as usual, we call first or physical sheet the one 
corresponding to a momentum with a positive imaginary part. The 
S matrix evaluated on sheet I (II) is written as S I (s) (SII(s)). If no 
subscript is given, the expression holds for both sheets. It follows 
directly from unitarity and analyticity that [15]

S I (s) = 1/SII(s) and
[

S(s)
]∗ = S

(
s∗). (1)

As a consequence a pole on the second sheet immediately implies 
a zero on the first and vice-versa. In addition, if there is a pole at 
s = s0, there must also be a pole at s = s∗

0, i.e., poles outside the 
real axis occur in conjugate pairs. Furthermore, it can be shown 
that the only poles allowed on the physical sheet are bound state 
poles, namely, those located on the real axis below threshold.

A different, but equivalent, way to discuss the pole structure 
of the S-matrix is to use the k-plane: instead of the Mandelstam 
variable s, the center of mass momentum k is used to characterize 
the energy of the system. The two quantities are related via

k =
√

s/4 − m2. (2)

2 For simplicity we only consider the case of scattering of two particles with 
equal mass, however, the generalization to unequal masses is straightforward.

Fig. 1. Relation between k-plane and s-plane: on the left the k-plane is shown. The 
(red) xs denote the physical axis. On the right the two s-plane sheets are shown. 
Here the broad band indicates the position of the unitarity cut. The upper (lower) 
half plane of the k-plane maps onto the first (second) sheet in the s-plane such that 
the points A–D get transferred as indicated in the figure. In addition, the allowed 
pole positions in the complex plane are also shown as x. They are labeled as b for 
the bound state, v for the virtual state, and r and r′ for the two conjugate poles of 
the resonance state.

The obvious advantage is that there is no right hand cut with re-
spect to k and correspondingly there is only one sheet. It follows 
directly from the definition that the upper (lower) half plane of 
the complex k-plane, defined by positive (negative) values of the 
imaginary part of k, maps onto the first (second) sheet of the 
s-plane. The conditions derived above from Eq. (1) translate into 
the k-plane as follows: the only poles allowed in the upper half 
plane are on the imaginary axis and in the lower half plane appear 
as mirror images with respect to the imaginary axis. The relation 
between the different planes is illustrated in Fig. 1. On the one 
hand, it becomes clear from the figure that the resonance pole 
located at r is the one closest to the physical axis and therefore 
physically more relevant than the one at r′ in the vicinity of the 
pole. On the other hand, at the threshold both poles are equally 
relevant regardless where they are located in the second sheet. Fi-
nally, in the k plane virtual states appear as poles on the negative 
imaginary axis (labeled as v in the figure) and bound states as 
poles on the positive imaginary axis (labeled as b in the figure).

Now, assuming that there is at least one resonance pole, and 
that it is not too far away from threshold, we are now in the posi-
tion of writing down the most general expression for the S-matrix 
in the vicinity of that pole or its conjugate partner. For the deriva-
tion it is easier to use the k plane, and thus we assume that there 
is a resonance pole at k = kp − iγ with γ > 0. For a resonance, kp

is a real number and we choose kp > 0, for, as commented above, 
it corresponds to the pole closest to the physical axis. Then, from 
the above considerations it follows that there is in addition a pole 
at k = −kp − iγ and zeros at k = ±kp + iγ . We may therefore, drop-
ping terms of higher order in k, and for a particular partial wave �, 
write the following general expression for the S-matrix element in 
the vicinity of the pole [15]:

S�(k) = eiφ(k) (k − kp − iγ )(k + kp − iγ )

(k − kp + iγ )(k + kp + iγ )
, (3)

where φ(k) is a smooth function, real valued for real, positive val-
ues of k. For simplicity this phase factor will be dropped in what 
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