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We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by 
controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering 
relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the 
possible use of these relativistic techniques to build 1-qubit quantum gates.
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1. Introduction

The study of the interface between quantum mechanics, field 
theory and general relativity has led to results where, in prin-
ciple, relativistic features can be used to gain advantage over 
non-relativistic settings in the processing of quantum information 
[1–4].

To implement quantum gates, or even quantum simulators, we 
need to very accurately control the degrees of freedom we use as 
qubits as well as the dynamics of the quantum mechanical systems 
that contain them. Such degree of control has been achieved, for 
instance, in NMR devices [5] which have been largely employed to 
implement quantum computing algorithms on nuclear spins.

In these devices, electrical currents are used to generate mag-
netic fields that ultimately influence the state of the nuclear spin 
qubit. The microscopic mechanism of how the accelerated charges 
interact with the nuclear spin is commonly simplified by treating 
the field classically. However, it is not unreasonable to think that 
detailed study of the interaction of the moving charges with the 
qubit degrees of freedom – mediated by a fully quantum EM field 
– may enhance our ability to control the qubit. Moreover, treating 
this setting in a relativistic framework may allow us to see how (or 
if) relativistic effects can actually improve our capacity to control 
the qubit beyond what classical models predict.

From the fundamental high-energy physics point of view this 
analysis may prove interesting in the following way: We will show 
that the relativistic motion of a probe induces high-energy rela-
tivistic effects that can be used to control a logical qubit stored 
in a stationary atom. Hence, this suggests a connection between 
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high energy physics and quantum optics and information. For in-
stance, based on these results, one could think of using charged 
beams generated by particle colliders to control the state of atomic 
qubits, and maybe recast some of the problems of measurement of 
the outcome of particle colliders in terms of quantum informa-
tional variables. As we will highlight, the phenomena described in 
this paper already manifests at the scales of energies present in 
the LHC.

It is already known that non-inertial motion can be used to im-
plement universal single qubit gates on atomic systems [2] and 
Gaussian two-qubit gates on cavity field modes [3]. In more de-
tail, [2] showed that control over the acceleration of atoms can be 
used to perform quantum gates as a direct consequence of rela-
tivistic quantum effects. However, these schemes require control 
over both the internal degrees of freedom of an atom and over the 
non-inertial motion of its center-of-mass, which may prove chal-
lenging in a practical experimental setting. For instance, the force 
that accelerates the atom may also induce transitions between the 
energy levels that constitute the logical qubits.

In this paper we explore how controlling the trajectory of an 
accelerated atom (the probe atom) allows us to garner control 
over a different atomic qubit (the target qubit) that sits stationary 
inside an optical cavity. Namely, we will show that it is indeed pos-
sible to perform arbitrary rotations on the Bloch sphere of the state 
of the target qubit with only a small decoherence effect. We obtain 
such effects already in the simplified case of uniformly accelerated 
trajectories of the probe atom, even in the relatively simple sce-
nario where we consider only atoms (one probe and one target) 
coupled through the interaction with the quantum field.

Furthermore, we show that when the probe is allowed to at-
tain high speeds, relativistic effects start to influence the target 
atom. Remarkably, and maybe against intuition [6,7], these effects 

http://dx.doi.org/10.1016/j.physletb.2014.10.038
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2014.10.038
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
mailto:emartinm@uwaterloo.ca
http://dx.doi.org/10.1016/j.physletb.2014.10.038
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.10.038&domain=pdf


E. Martín-Martínez, C. Sutherland / Physics Letters B 739 (2014) 74–82 75

Fig. 1. The probe atom (A) is shot through the cavity and the target atom (B) is 
stationary at x = L/2, they interact only via the field. We control the probe’s trajec-
tory, and this gives us control over the target qubit. The probe’s worldline is given 
by t(τ ) = a−1 sinh aτ , x(τ ) = a−1(cosh aτ − 1).

allow for better control of the target qubit. We will quantitatively 
show how we can effectively get larger controlled Bloch sphere 
rotations when the probe’s motion is relativistic as opposed to 
non-relativistic.

2. Setup

We will consider a target atom at rest inside a stationary op-
tical cavity of purely reflective walls as illustrated in Fig. 1. The 
probe atom will fly through the cavity describing a constantly ac-
celerated motion. Both atoms couple locally (along their respective 
worldlines) to the quantum field inside the cavity.

We will use the Unruh–DeWitt Hamiltonian [8] to model the 
light-matter interaction. This model, often used to model rela-
tivistic particle detectors [9], is identical to the Jaynes–Cummings 
model of light-matter interaction [10] but without taking the sin-
gle mode approximation nor the rotating wave approximation. Al-
though simple, the model captures all the features of the light-
matter interaction when no orbital angular momentum exchange 
transitions are considered [11,12].

The Hamiltonian for a single detector will be of the form H =
H (d)

0 + H ( f )
0 + H I , where H (d)

0 and H ( f )
0 are the detector and field 

free Hamiltonians. The interaction Hamiltonian H I is of the form 
H I = λξ(τ )μ(τ )Φ[x(τ )] where λξ(τ ) is a time dependent coupling 
strength controlling the interaction time, μ(τ) = (σ+e−iΩτ + H.c.)
is the monopole moment operator (in the interaction picture) 
where Ω is the energy gap between the two levels of the atom, 
x(τ ) is the worldline of the atom parametrized in terms of its 
proper time and Φ[x(τ )] is the field operator which we expand 
in terms of stationary wave modes. Throughout the paper we will 
use natural units c = h̄ = 1 and we will take the scale Ω as our 
reference. How our results translate into dimensionful units is ex-
plained in the section ‘Experimental feasibility’ below.

Since there are two atoms with different states of motion (thus 
different proper reference frames) we need to choose with respect 
to what time parameter we want the full Hamiltonian to generate 
evolution. We choose the proper time of the stationary atom; con-
sequently there is a redshift factor in front of the accelerated atom 
term of H I . This is a somewhat subtle point which is discussed 
in-depth in [13]. Taking all this into account we finally obtain 
H I (t) = dτ

dt H (A)
I [τ (t)] + H (B)

I (t), where the individual H (d)
I are given 

by the single detector interaction Hamiltonian shown above and t
is the cavity rest frame time.

We initially prepare the quantum field in the cavity such that 
one of the field modes is in a coherent state of complex ampli-
tude α, and the rest of the modes are lowly-populated. Preparing 
a near-resonant coherent state reduces the amount of entangle-

ment acquired between the atoms and the field. This in turn helps 
screen out the mixedness effects on the target qubit produced by 
the ‘Unruh noise’ generated by the probe’s relativistic motion [2,
14]. Thus the initial atoms-field density matrix can be written as 
ρ0 = ρA,0 ⊗ρB,0 ⊗|αω1 〉〈αω1 | ⊗ωn �=ω1 |0ωn 〉〈0ωn |. Notice that, since 
we are in a cavity, the frequencies ωn = nπ/L form a discrete set.

When the probe enters the cavity, it becomes coupled to the 
field. We take a perturbative approach (valid for small couplings 
and short times) to analyze the system dynamics. The time evo-
lution under this Hamiltonian from a time t = 0 to time t = T is 
given by

U (T ,0) = 1 − i

T∫
0

dt1 H I (t1) −
T∫

0

dt1

t1∫
0

dt2 H I (t1)H I (t2),

plus terms O(λ3), where the notation O(λn) refers to powers of 
the coupling strengths of both the probe-field λA and target-field 
λB , so that λAλB is an O(λ2) term. The density matrix after a time 
T will be given by the perturbative expansion ρT = ρ0 + ρ

(1)
T +

ρ
(2)
T +O(λ3) where

ρ
(1)
T = U (1)ρ0 + ρ0U (1)†

, (1)

ρ
(2)
T = U (1)ρ0U (1)† + U (2)ρ0 + ρ0U (2)†

. (2)

Recall that we are interested in the target’s final state, and so 
we will trace out the field modes as well as the probe’s state to 
obtain: ρT ,B = TrA(Tr f (ρT )). We will compare this to the target’s 
initial density matrix, and quantitatively assess our ability to con-
trol the target qubit by controlling the probe’s motion.

3. Performing 1-qubit rotations

In [2], one-qubit gates were obtained through the non-inertial 
motion of the atom which supported the logical qubit. Arbitrary 
rotations on the Bloch sphere were achieved introducing no deco-
herence to leading order in perturbation theory. The price to pay is 
that logical quantum operations are performed on the qubit whose 
non-inertial trajectory had to be controlled. As opposed to [2] we 
use the motion of a different probe atom to gain control over the 
target qubit, physically supported on a different atom which rests 
in the cavity. Hence, we are not required to keep under control 
both the trajectory and the internal state of one atom simultane-
ously. While advantageous in this sense, there is a trade-off on the 
quality of the quantum gates that we could implement with this 
setting. As the ‘remote control’ appears as a second order effect, 
it is impossible to perform a 100% clean Bloch sphere rotation via 
this mechanism and, unavoidably, some mixedness will be intro-
duced in the target state. In contrast, in [2] the dynamics were 
fully unitary to leading order in perturbation theory. However, we 
will show that the mixedness introduced in the stationary qubit 
is always small as compared to the magnitude of the rotations 
that we can obtain on the target’s Bloch sphere vector. Moreover, 
we will show that it is indeed advantageous to consider regimes 
where the probe’s trajectory is relativistic in order to more effi-
ciently manipulate the target’s qubit.

First order contributions to the target’s time evolution cannot 
be influenced by the interaction of the field and the probe: At first 
order in perturbation theory we will only have contributions to 
the target dynamics which are proportional to λB , and thus these 
effects are only dependent on the initial state of the field and the 
target. The leading order contributions to the remote control of the 
target have to be proportional to λAλB .
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