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The elegant ‘no short hair’ theorem states that, if a spherically-symmetric static black hole has hair, then
this hair must extend beyond 3/2 the horizon radius. In the present paper we provide evidence for
the failure of this theorem beyond the regime of spherically-symmetric static black holes. In particular,
we show that rotating black holes can support extremely short-range stationary scalar configurations
(linearized scalar ‘clouds’) in their exterior regions. To that end, we solve analytically the Klein—-Gordon-

Kerr-Newman wave equation for a linearized massive scalar field in the regime of large scalar masses.
© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Within the framework of classical general relativity, the black-
hole horizon acts as a one-way membrane which irreversibly ab-
sorbs matter fields and radiation. This remarkable property of
the black-hole horizon suggests, in particular, that static matter
configurations cannot be supported in the spacetime region out-
side the black-hole horizon. This expectation is nicely summa-
rized in Wheeler’s famous dictum “a black hole has no hair” [1,2],
which suggests that the spacetime geometries of all asymptotically
flat stationary black holes are uniquely described by the three-
parameter family [3] of the Kerr-Newman electrovacuum solution
[4-6].

The ‘no-hair’ conjecture [1,2] has attracted much attention over
the years from both physicists and mathematicians. Early investiga-
tions of the conjecture have ruled out the existence of static hairy
black-hole configurations made of scalar fields 7], spinor fields [8],
and massive vector fields [9]. However, the early 90s have wit-
nessed the discovery of a variety of regular [10] hairy black-hole
configurations, the first of which were the ‘colored’ black holes
which are solutions of the coupled Einstein-Yang-Mills equations
[11]. It has soon been realized that many non-linear matter fields
[12], when coupled to the Einstein field equations, can lead to the
formation of hairy black-hole configurations [13-23].

The validity of the original no-hair conjecture [1,2] has become
highly doubtful since the discovery of these non-linear [11,13-23]
hairy black-hole configurations [24]. The current situation naturally
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gives rise to the following question: Is it possible to formulate a
more modest (and robust) alternative to the original no hair con-
jecture?

A very intriguing attempt to reveal the generic characteristics
of hairy black-hole configurations was made in [25]: A ‘no short
hair’ theorem was proved, according to which static spherically-
symmetric black holes cannot support short hair. In particular, it
was shown in [25] that, in all Einstein-matter theories in which
static hairy black-hole configurations have been discovered, the ef-
fective length of the outside hair is bounded from below by [26]

Thair > %rH’ (1)
where ry is the horizon-radius of the black hole. This ‘no short
hair’ theorem was suggested [25] as an alternative to the original
[1,2] ‘no hair’ conjecture.

It is worth emphasizing that the formal proof of the lower
bound (1) provided in [25] is restricted to the static sector of
spherically-symmetric black holes. Nevertheless, it was conjectured
[25] that the ‘no short hair’ bound (1) can be generalized in the
form

. 3 /Ay
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to include the cases of non-spherically-symmetric stationary hairy
black-hole configurations.

The main goal of the present paper is to test the validity of
the ‘no short hair’ conjecture beyond the regime of spherically
symmetric static black holes. In particular, we shall explore here
the physical properties of non-spherically-symmetric rotating black
holes coupled to linearized stationary (rather than static) scalar

Ay = horizon area (2)
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matter configurations. (It should be emphasized that the scalar
fields we consider have a time dependence of the form e~i®t
[see Eq. (10) below]. However, physical quantities, like the energy-
momentum tensor itself, are time-independent.)

2. Composed black-hole-scalar-field configurations

While early no hair theorems have shown that asymptotically
flat black holes cannot support regular static scalar configura-
tions in their exterior regions [7], they have not ruled out the
existence of non-static composed black-hole-scalar-field configu-
rations. In fact, it has recently [27] been demonstrated that ro-
tating black holes can support linearized stationary scalar config-
urations (scalar ‘clouds’ [28,29]) in their exterior regions. Since
non-linear (self-interaction) effects tend to stabilize the outside
hair [25,30], we conjectured in [27] the existence of rotating black
hole solutions endowed with genuine non-static scalar hair. These
non-static hairy black-hole-scalar-field configurations are the non-
linear counterparts of the linear scalar clouds studied analytically
in [27]. In a very interesting letter, Herdeiro and Radu [31] have
recently solved numerically the non-linear coupled Einstein-scalar
equations, and confirmed the existence of these non-static hairy
black-hole configurations.

The composed black-hole-scalar-field configurations [32] ex-
plored in [27,31] are intimately related to the intriguing phe-
nomenon of superradiant scattering of bosonic fields in rotating
black-hole spacetimes [33-36]. In particular, the linearized station-
ary scalar configurations studied in [27,31] are characterized by
orbital frequencies which are integer multiples of the central black-
hole angular frequency [37]:

Wfield =My withm=1,2,3,.... (3)

It is well-established [33-36] that the energy flux of the field
into the central spinning black hole vanishes for bosonic modes
which satisfy the relation (3). In this case, the bosonic field is not
swallowed by the central black hole. This suggests that station-
ary bosonic configurations which are in resonance with the central
spinning black hole (that is, bosonic fields with orbital frequencies
Wfield = MS2y) may survive in the spacetime region exterior to the
black-hole horizon.

In order to have genuine stationary (non-decaying) field config-
urations around the central black hole, one should also prevent the
field from escaping to infinity. A natural confinement mechanism
is provided by the gravitational attraction between the massive
field and the central black hole. In particular, for a scalar field of
mass i, low frequency field modes in the regime [38]

w? < )
are confined to the vicinity of the central black hole.

As discussed above, the main goal of the present paper is to
test the validity of the ‘no short hair’ conjecture (1) [25] beyond
the regime of spherically-symmetric static black holes. To that end,
we shall analyze the physical properties of the non-static (rotating)
black-hole-scalar-field configurations [27,31] in the eikonal regime

Mp > 1, (5)
where M is the mass of the central spinning black hole.
3. Description of the system

The physical system we consider consists of a massive scalar

field ¥ linearly coupled [39] to an extremal Kerr-Newman black
hole of mass M, angular-momentum per unit mass a, and electric

charge Q. In Boyer-Lindquist coordinates (t,r, 6, ¢) the spacetime
metric is given by [4-6]

A 2
ds® = ~ (dt — asin? 9d¢)2 + %drz + p2do?

sin® 0
+ P

[adt — (% + a?)dg]* (6)

where A =12 —2Mr+a? + Q2 and p =% + a?cos?6. The ex-
tremality condition implies that the degenerate horizon of the
black hole is located at

a2+ Q2. (7)
The angular velocity of the black hole is given by [4-6]

rH=M=

. a
- M2 4a?
The dynamics of the linearized massive scalar field ¥ in the

Kerr-Newman black-hole spacetime is governed by the Klein-
Gordon (Teukolsky) wave equation

ot (8)

(V'V, —u?)w =o0. 9)

It proves useful to use the ansatz [40]
w(t,r,0,p)= / > €™ Sim(0; s€)Rim (13 5, ., w)e " 'dw  (10)
Im

for the scalar wave field in (9), where

a

— 11
- (1)

is the dimensionless angular-momentum (spin) of the black hole,
and

€=M,/ u? — w?. (12)

The angular equation for Sy, (0; s€), which is obtained from the
substitution of (10) into (9), is given by [41-46]

S

1 d ds 2
(sim?ﬂ) + [K;m + (se)2 sin 0 — .mz G]SIm =0.
sin

sing o \"" a0

(13)
This angular equation is supplemented by the requirement that the
angular functions Sy, (0; s€) [47] be regular at the poles 6 =0 and
6 = mr. These boundary conditions single out the discrete set of an-
gular eigenvalues {Kj,(s€)} with [ > |m| [45]. We shall henceforth
consider equatorial scalar modes in the eikonal regime
I=m>1 and se > 1, (14)

in which case the angular eigenvalues are given by [48,49]

Kimm(s€) =m? — (s€)? + 0(m). (15)

The radial equation for Ry, which is obtained from the substi-
tution of (10) into (9), is given by [41,42]

(48R 1102 4 @) — mal?
Adr<A dr>+[[(r + @)oo — ma]
+ A[2maw — p?(r* + a*) — Kim]]Rim = 0. (16)

Note that the radial equation (16) for Ry, is coupled to the angular
equation (13) for Sy, through the angular eigenvalues {Kjy(s€)}
[50].
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