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The elegant ‘no short hair’ theorem states that, if a spherically-symmetric static black hole has hair, then 
this hair must extend beyond 3/2 the horizon radius. In the present paper we provide evidence for 
the failure of this theorem beyond the regime of spherically-symmetric static black holes. In particular, 
we show that rotating black holes can support extremely short-range stationary scalar configurations 
(linearized scalar ‘clouds’) in their exterior regions. To that end, we solve analytically the Klein–Gordon–
Kerr–Newman wave equation for a linearized massive scalar field in the regime of large scalar masses.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Within the framework of classical general relativity, the black-
hole horizon acts as a one-way membrane which irreversibly ab-
sorbs matter fields and radiation. This remarkable property of 
the black-hole horizon suggests, in particular, that static matter 
configurations cannot be supported in the spacetime region out-
side the black-hole horizon. This expectation is nicely summa-
rized in Wheeler’s famous dictum “a black hole has no hair” [1,2], 
which suggests that the spacetime geometries of all asymptotically 
flat stationary black holes are uniquely described by the three-
parameter family [3] of the Kerr–Newman electrovacuum solution 
[4–6].

The ‘no-hair’ conjecture [1,2] has attracted much attention over 
the years from both physicists and mathematicians. Early investiga-
tions of the conjecture have ruled out the existence of static hairy 
black-hole configurations made of scalar fields [7], spinor fields [8], 
and massive vector fields [9]. However, the early 90s have wit-
nessed the discovery of a variety of regular [10] hairy black-hole 
configurations, the first of which were the ‘colored’ black holes 
which are solutions of the coupled Einstein–Yang–Mills equations 
[11]. It has soon been realized that many non-linear matter fields 
[12], when coupled to the Einstein field equations, can lead to the 
formation of hairy black-hole configurations [13–23].

The validity of the original no-hair conjecture [1,2] has become 
highly doubtful since the discovery of these non-linear [11,13–23]
hairy black-hole configurations [24]. The current situation naturally 
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gives rise to the following question: Is it possible to formulate a 
more modest (and robust) alternative to the original no hair con-
jecture?

A very intriguing attempt to reveal the generic characteristics 
of hairy black-hole configurations was made in [25]: A ‘no short 
hair’ theorem was proved, according to which static spherically-
symmetric black holes cannot support short hair. In particular, it 
was shown in [25] that, in all Einstein-matter theories in which 
static hairy black-hole configurations have been discovered, the ef-
fective length of the outside hair is bounded from below by [26]

rhair >
3

2
rH, (1)

where rH is the horizon-radius of the black hole. This ‘no short 
hair’ theorem was suggested [25] as an alternative to the original 
[1,2] ‘no hair’ conjecture.

It is worth emphasizing that the formal proof of the lower 
bound (1) provided in [25] is restricted to the static sector of 
spherically-symmetric black holes. Nevertheless, it was conjectured 
[25] that the ‘no short hair’ bound (1) can be generalized in the 
form

rhair >
3

2

√
AH

4π
; AH ≡ horizon area (2)

to include the cases of non-spherically-symmetric stationary hairy 
black-hole configurations.

The main goal of the present paper is to test the validity of 
the ‘no short hair’ conjecture beyond the regime of spherically 
symmetric static black holes. In particular, we shall explore here 
the physical properties of non-spherically-symmetric rotating black 
holes coupled to linearized stationary (rather than static) scalar 

http://dx.doi.org/10.1016/j.physletb.2014.10.062
0370-2693/© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2014.10.062
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
mailto:shaharhod@gmail.com
http://dx.doi.org/10.1016/j.physletb.2014.10.062
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.10.062&domain=pdf


S. Hod / Physics Letters B 739 (2014) 196–200 197

matter configurations. (It should be emphasized that the scalar 
fields we consider have a time dependence of the form e−iωt

[see Eq. (10) below]. However, physical quantities, like the energy–
momentum tensor itself, are time-independent.)

2. Composed black-hole–scalar-field configurations

While early no hair theorems have shown that asymptotically 
flat black holes cannot support regular static scalar configura-
tions in their exterior regions [7], they have not ruled out the 
existence of non-static composed black-hole–scalar-field configu-
rations. In fact, it has recently [27] been demonstrated that ro-
tating black holes can support linearized stationary scalar config-
urations (scalar ‘clouds’ [28,29]) in their exterior regions. Since 
non-linear (self-interaction) effects tend to stabilize the outside 
hair [25,30], we conjectured in [27] the existence of rotating black 
hole solutions endowed with genuine non-static scalar hair. These 
non-static hairy black-hole–scalar-field configurations are the non-
linear counterparts of the linear scalar clouds studied analytically 
in [27]. In a very interesting letter, Herdeiro and Radu [31] have 
recently solved numerically the non-linear coupled Einstein-scalar 
equations, and confirmed the existence of these non-static hairy 
black-hole configurations.

The composed black-hole–scalar-field configurations [32] ex-
plored in [27,31] are intimately related to the intriguing phe-
nomenon of superradiant scattering of bosonic fields in rotating 
black-hole spacetimes [33–36]. In particular, the linearized station-
ary scalar configurations studied in [27,31] are characterized by 
orbital frequencies which are integer multiples of the central black-
hole angular frequency [37]:

ωfield = mΩH with m = 1,2,3, ... . (3)

It is well-established [33–36] that the energy flux of the field 
into the central spinning black hole vanishes for bosonic modes 
which satisfy the relation (3). In this case, the bosonic field is not 
swallowed by the central black hole. This suggests that station-
ary bosonic configurations which are in resonance with the central 
spinning black hole (that is, bosonic fields with orbital frequencies 
ωfield = mΩH) may survive in the spacetime region exterior to the 
black-hole horizon.

In order to have genuine stationary (non-decaying) field config-
urations around the central black hole, one should also prevent the 
field from escaping to infinity. A natural confinement mechanism 
is provided by the gravitational attraction between the massive 
field and the central black hole. In particular, for a scalar field of 
mass μ, low frequency field modes in the regime [38]

ω2 < μ2 (4)

are confined to the vicinity of the central black hole.
As discussed above, the main goal of the present paper is to 

test the validity of the ‘no short hair’ conjecture (1) [25] beyond 
the regime of spherically-symmetric static black holes. To that end, 
we shall analyze the physical properties of the non-static (rotating) 
black-hole–scalar-field configurations [27,31] in the eikonal regime

Mμ � 1, (5)

where M is the mass of the central spinning black hole.

3. Description of the system

The physical system we consider consists of a massive scalar 
field Ψ linearly coupled [39] to an extremal Kerr–Newman black 
hole of mass M , angular-momentum per unit mass a, and electric 

charge Q . In Boyer–Lindquist coordinates (t, r, θ, φ) the spacetime 
metric is given by [4–6]

ds2 = − Δ

ρ2

(
dt − a sin2 θdφ

)2 + ρ2

Δ
dr2 + ρ2dθ2

+ sin2 θ

ρ2

[
adt − (

r2 + a2)dφ
]2

(6)

where Δ ≡ r2 − 2Mr + a2 + Q 2 and ρ ≡ r2 + a2 cos2 θ . The ex-
tremality condition implies that the degenerate horizon of the 
black hole is located at

rH = M =
√

a2 + Q 2. (7)

The angular velocity of the black hole is given by [4–6]

ΩH = a

M2 + a2
. (8)

The dynamics of the linearized massive scalar field Ψ in the 
Kerr–Newman black-hole spacetime is governed by the Klein–
Gordon (Teukolsky) wave equation

(∇ν∇ν − μ2)Ψ = 0. (9)

It proves useful to use the ansatz [40]

Ψ (t, r, θ,φ) =
∫ ∑

l,m

eimφ Slm(θ; sε)Rlm(r; s,μ,ω)e−iωtdω (10)

for the scalar wave field in (9), where

s ≡ a

M
(11)

is the dimensionless angular-momentum (spin) of the black hole, 
and

ε ≡ M
√

μ2 − ω2. (12)

The angular equation for Slm(θ; sε), which is obtained from the 
substitution of (10) into (9), is given by [41–46]

1

sin θ

d

θ

(
sin θ

dSlm

dθ

)
+

[
Klm + (sε)2 sin2 θ − m2

sin2 θ

]
Slm = 0.

(13)

This angular equation is supplemented by the requirement that the 
angular functions Slm(θ; sε) [47] be regular at the poles θ = 0 and 
θ = π . These boundary conditions single out the discrete set of an-
gular eigenvalues {Klm(sε)} with l ≥ |m| [45]. We shall henceforth 
consider equatorial scalar modes in the eikonal regime

l = m � 1 and sε � 1, (14)

in which case the angular eigenvalues are given by [48,49]

Kmm(sε) = m2 − (sε)2 + O (m). (15)

The radial equation for Rlm , which is obtained from the substi-
tution of (10) into (9), is given by [41,42]

Δ
d

dr

(
Δ

dRlm

dr

)
+ [[(

r2 + a2)ω − ma
]2

+ Δ
[
2maω − μ2(r2 + a2) − Klm

]]
Rlm = 0. (16)

Note that the radial equation (16) for Rlm is coupled to the angular 
equation (13) for Slm through the angular eigenvalues {Klm(sε)}
[50].
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