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Static spherically-symmetric matter distributions whose energy–momentum tensor is characterized by 
a non-negative trace are studied analytically within the framework of general relativity. We prove that 
such field configurations are necessarily highly relativistic objects. In particular, for matter fields with 
T ≥ α · ρ ≥ 0 (here T and ρ are respectively the trace of the energy–momentum tensor and the energy 
density of the fields, and α is a non-negative constant), we obtain the lower bound maxr{2m(r)/r} > (2 +
2α)/(3 + 2α) on the compactness (mass-to-radius ratio) of regular field configurations. In addition, we 
prove that these compact objects necessarily possess (at least) two photon-spheres, one of which exhibits 
stable trapping of null geodesics. The presence of stable photon-spheres in the corresponding curved 
spacetimes indicates that these compact objects may be nonlinearly unstable. We therefore conjecture 
that a negative trace of the energy–momentum tensor is a necessary condition for the existence of stable, 
soliton-like (regular) field configurations in general relativity.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Nonlinear solitons have a long and broad history in science. 
These regular particle-like configurations find applications in many 
areas of physics, such as general relativity [1], string theory [2], 
condensed matter physics [3], nonlinear optics [4], and astro-
physics [5].

Let us denote by T μ
ν the energy–momentum tensor of the mat-

ter fields which compose a nonlinear static soliton. A simple argu-
ment [1,6] then reveals that, in flat space, the sum of the principal 
pressures, 

∑
i pi (here pi = T i

i ), cannot have a fixed sign through-
out the body volume. This can be seen from the conservation 
law ∂ j T j

i = 0, which implies that the spatial components of the 
energy–momentum tensor satisfy [1,6]
∫

R3

Tijd
3x = 0. (1)

The volume integral (1) has a simple physical meaning: it states 
that the total stresses must balance in a static matter distribution 
[1,6]. The relation (1) then implies that the sum of the principal 
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pressures must switch signs somewhere inside the volume of the 
extended body. In particular, no regular static matter distributions 
exist with 

∑
i pi > 0 throughout the entire space. Such systems are 

of a purely repulsive nature and thus the force balance is impossi-
ble [1,6].

Although for purely repulsive matter fields (with 
∑

i pi > 0
throughout the body volume) in flat space the force balance is im-
possible, the situation may change in curved spacetimes (that is, 
in the presence of gravity). This fact is nicely demonstrated by the 
existence of globally regular particle-like solutions of the coupled 
Einstein–Yang–Mills field equations [7]. These non-linear solitons 
describe extended objects in which the repulsive nature of the 
matter field [8] is balanced by the attractive nature of gravity.

2. The trace of the energy–momentum tensor

We have seen that any flat-space static matter distribution must 
be characterized by the relation 

∑
i pi < 0 in some part of it. De-

noting by ρ > 0 [9] the energy-density of the matter fields, one 
concludes that the trace of the energy–momentum tensor,

T ≡ −ρ +
∑

i pi, (2)

must also be negative in this part of the system volume. Thus, 
a negative trace of the energy–momentum tensor, at least in some 
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part of the system volume, is a necessary condition for the exis-
tence of static regular matter distributions in flat spacetimes.

However, it should be emphasized that this conclusion no 
longer holds true in curved spacetimes. In particular, static soliton-
like field configurations which are characterized by a non-negative 
trace (throughout the entire configuration’s volume) do exist. The 
gravitating Einstein–Yang–Mills solitons [7], which are character-
ized by the identity T = 0, are a well-known example for such 
regular particle-like configurations.

The main goal of the present paper is to analyze, within the 
framework of general relativity, the physical properties of regu-
lar self-gravitating field configurations whose energy–momentum 
tensor is characterized by a non-negative trace [10]. The rest of 
the paper is organized as follows: In Section 3 we shall describe 
our physical system. In particular, we shall formulate the Einstein 
field equations in terms of the trace of the energy–momentum 
tensor. In Section 4 we shall prove that matter configurations 
which are characterized by a non-negative energy–momentum 
trace are necessarily highly relativistic objects. In particular, we 
shall derive a lower bound on the compactness (mass-to-radius ra-
tio [11,12]) of these extended physical objects. In Section 5 we 
shall prove that the curved spacetime geometries which describe 
these self-gravitating objects necessarily possess (at least) two 
photon-spheres, compact hypersurfaces on which massless parti-
cles can follow null circular geodesics. We shall show that one of 
these photon-spheres exhibits stable trapping of the null circular 
geodesics. We conclude in Section 6 with a summary of the main 
results.

3. Description of the system

We study static spherically symmetric matter configurations 
in asymptotically flat spacetimes. The line element describing the 
spacetime geometry takes the following form in Schwarzschild co-
ordinates [12–15]

ds2 = −e−2δμdt2 + μ−1dr2 + r2(dθ2 + sin2 θdφ2). (3)

The metric functions δ(r) and μ(r) in (3) depend on the Schwarz-
schild areal coordinate r. Regularity of the matter configurations at 
the center requires

μ(r → 0) = 1 + O
(
r2) and δ(0) < ∞. (4)

In addition, asymptotically flat spacetimes are characterized by

μ(r → ∞) → 1 and δ(r → ∞) → 0. (5)

The fields that compose the matter configurations are character-
ized by an energy–momentum tensor T μ

ν . The Einstein equations, 
Gμ

ν = 8π T μ
ν , are given by [12,13,16]

μ′ = −8πrρ + (1 − μ)/r, (6)

and

δ′ = −4πr(ρ + p)/μ, (7)

where T t
t = −ρ , T r

r = p, and T θ
θ = T φ

φ = pT are respectively the 
energy density, the radial pressure, and the tangential pressure of 
the fields [11], and a prime denotes differentiation with respect 
to r.

The gravitational mass m(r) contained within a sphere of radius 
r is given by [17]

m(r) =
r∫

0

4πx2ρ(x)dx. (8)

For the total mass of the configuration to be finite, the energy den-
sity ρ should approach zero faster than r−3 at spatial infinity:

r3ρ(r) → 0 as r → ∞. (9)

Substituting the Einstein field equations (6) and (7) into the 
conservation equation

T μ
r;μ = 0, (10)

one finds

p′(r) = 1

2μr

[
N (ρ + p) + 2μT − 8μp

]
(11)

for the pressure gradient, where

T ≡ −ρ + p + 2pT (12)

is the trace of the energy–momentum tensor, and

N (r) ≡ 3μ − 1 − 8πr2 p. (13)

Below we shall analyze the spatial behavior of the pressure func-
tion P (r) ≡ r2 p(r), whose gradient is given by [see Eq. (11)]

P ′(r) = r

2μ

[
N (ρ + p) + 2μT − 4μp

]
. (14)

We shall assume that the matter fields satisfy the following 
conditions:

(1) The dominant energy condition [18]. This means that the 
energy density bounds the pressures:

ρ ≥ |p|, |pT | ≥ 0. (15)

(2) The trace of the energy–momentum tensor is non-negative. 
Specifically, we shall assume that the trace is bounded from below 
by

T ≥ α · ρ ≥ 0, (16)

where α ≥ 0 is a constant. Note that Eqs. (12) and (15) imply 
T ≤ 2ρ , an inequality which restricts the value of α to the regime 
[19,20]:

0 ≤ α ≤ 2. (17)

From Eqs. (12), (15), and (16) one also finds

pT = 1

2

[
T + (ρ − p)

] ≥ 0. (18)

4. Lower bound on the compactness of the matter distributions

In the present section we shall derive a lower bound on the 
compactness, maxr{2m(r)/r}, of the regular field configurations. To 
that end, we shall first analyze the behavior of the pressure func-
tion P (r) in the asymptotic regimes r → 0 and r → ∞:

(1) From Eqs. (4) and (11) one finds p′(r) = 2(pT − p)/r as 
r → 0. Regularity of p(r) therefore requires p(0) = pT (0) ≥ 0 [see 
Eq. (18)], which implies [21]

P (r → 0) → 0+. (19)

(2) From Eqs. (5) and (14) one finds P ′(r) 	 2rpT as r → ∞, 
which implies [22]

P ′(r → ∞) → 0+. (20)

In addition, from Eqs. (9) and (15) one learns that p(r) should ap-
proach zero faster than r−3 at spatial infinity, which implies [23]
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