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Static spherically-symmetric matter distributions whose energy-momentum tensor is characterized by
a non-negative trace are studied analytically within the framework of general relativity. We prove that
such field configurations are necessarily highly relativistic objects. In particular, for matter fields with
T>oa-p>0(here T and p are respectively the trace of the energy-momentum tensor and the energy
density of the fields, and « is a non-negative constant), we obtain the lower bound max,{2m(r)/r} > 2+
20)/(3 + 2a) on the compactness (mass-to-radius ratio) of regular field configurations. In addition, we
prove that these compact objects necessarily possess (at least) two photon-spheres, one of which exhibits
stable trapping of null geodesics. The presence of stable photon-spheres in the corresponding curved
spacetimes indicates that these compact objects may be nonlinearly unstable. We therefore conjecture
that a negative trace of the energy-momentum tensor is a necessary condition for the existence of stable,
soliton-like (regular) field configurations in general relativity.
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1. Introduction

Nonlinear solitons have a long and broad history in science.
These regular particle-like configurations find applications in many
areas of physics, such as general relativity [1], string theory [2],
condensed matter physics [3], nonlinear optics [4]|, and astro-
physics [5].

Let us denote by T/’ the energy-momentum tensor of the mat-
ter fields which compose a nonlinear static soliton. A simple argu-
ment [1,6] then reveals that, in flat space, the sum of the principal
pressures, Y ;p; (here p; = Tii), cannot have a fixed sign through-
out the body volume. This can be seen from the conservation
law ajT{ =0, which implies that the spatial components of the
energy-momentum tensor satisfy [1,6]

/Tijd3x=0. (1)
R3

The volume integral (1) has a simple physical meaning: it states
that the total stresses must balance in a static matter distribution
[1,6]. The relation (1) then implies that the sum of the principal
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pressures must switch signs somewhere inside the volume of the
extended body. In particular, no regular static matter distributions
exist with )" ;p; > 0 throughout the entire space. Such systems are
of a purely repulsive nature and thus the force balance is impossi-
ble [1,6].

Although for purely repulsive matter fields (with ) ip; > 0
throughout the body volume) in flat space the force balance is im-
possible, the situation may change in curved spacetimes (that is,
in the presence of gravity). This fact is nicely demonstrated by the
existence of globally regular particle-like solutions of the coupled
Einstein-Yang-Mills field equations [7]. These non-linear solitons
describe extended objects in which the repulsive nature of the
matter field [8] is balanced by the attractive nature of gravity.

2. The trace of the energy-momentum tensor

We have seen that any flat-space static matter distribution must
be characterized by the relation ) ;p; < 0 in some part of it. De-
noting by p > 0 [9] the energy-density of the matter fields, one
concludes that the trace of the energy-momentum tensor,

=—p+) b, (2)

must also be negative in this part of the system volume. Thus,
a negative trace of the energy-momentum tensor, at least in some
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part of the system volume, is a necessary condition for the exis-
tence of static regular matter distributions in flat spacetimes.

However, it should be emphasized that this conclusion no
longer holds true in curved spacetimes. In particular, static soliton-
like field configurations which are characterized by a non-negative
trace (throughout the entire configuration’s volume) do exist. The
gravitating Einstein-Yang-Mills solitons [7], which are character-
ized by the identity T = 0, are a well-known example for such
regular particle-like configurations.

The main goal of the present paper is to analyze, within the
framework of general relativity, the physical properties of regu-
lar self-gravitating field configurations whose energy-momentum
tensor is characterized by a non-negative trace [10]. The rest of
the paper is organized as follows: In Section 3 we shall describe
our physical system. In particular, we shall formulate the Einstein
field equations in terms of the trace of the energy-momentum
tensor. In Section 4 we shall prove that matter configurations
which are characterized by a non-negative energy-momentum
trace are necessarily highly relativistic objects. In particular, we
shall derive a lower bound on the compactness (mass-to-radius ra-
tio [11,12]) of these extended physical objects. In Section 5 we
shall prove that the curved spacetime geometries which describe
these self-gravitating objects necessarily possess (at least) two
photon-spheres, compact hypersurfaces on which massless parti-
cles can follow null circular geodesics. We shall show that one of
these photon-spheres exhibits stable trapping of the null circular
geodesics. We conclude in Section 6 with a summary of the main
results.

3. Description of the system

We study static spherically symmetric matter configurations
in asymptotically flat spacetimes. The line element describing the
spacetime geometry takes the following form in Schwarzschild co-
ordinates [12-15]

ds? = —e 2 pdt? + u='dr? 4+ r*(d6? + sin® 0de?). (3)

The metric functions §(r) and w(r) in (3) depend on the Schwarz-
schild areal coordinate r. Regularity of the matter configurations at
the center requires

p(r—0)=1+0(r%) and §(0) < oo. (4)
In addition, asymptotically flat spacetimes are characterized by

u(@r—o00)—1 and §(r— o0) — 0. (5)

The fields that compose the matter configurations are character-
ized by an energy-momentum tensor T.'. The Einstein equations,
Gl =8m Tk, are given by [12,13,16]

w =—8rp+(1—p)/r, (6)
and
§' = —4mr(p + p)/ 10, (7)

where T} = —p, Tl = p, and Tg = ng = pr are respectively the
energy density, the radial pressure, and the tangential pressure of
the fields [11], and a prime denotes differentiation with respect
tor.

The gravitational mass m(r) contained within a sphere of radius
r is given by [17]

m(r) = /4nx2p(x)dx. (8)

0

For the total mass of the configuration to be finite, the energy den-
sity o should approach zero faster than r—3 at spatial infinity:

Pp(r) >0 asr— oco. (9)

Substituting the Einstein field equations (6) and (7) into the
conservation equation

Tﬁfu =0, (10)
one finds

1
p’(r)=2—W[N(p+p)+2uT—8up] (11)

for the pressure gradient, where

T=—p+p+2p7 (12)

is the trace of the energy-momentum tensor, and

N@T)=3u—1-8rr’p. (13)

Below we shall analyze the spatial behavior of the pressure func-
tion P(r) =rZp(r), whose gradient is given by [see Eq. (11)]

P'(r) = i[N(p+p)+2MT—4Mp]- (14)

We shall assume that the matter fields satisfy the following
conditions:

(1) The dominant energy condition [18]. This means that the
energy density bounds the pressures:

o =1pl,Iprl = 0. (15)

(2) The trace of the energy-momentum tensor is non-negative.
Specifically, we shall assume that the trace is bounded from below
by

T>o-p>0, (16)

where o > 0 is a constant. Note that Eqgs. (12) and (15) imply
T <2p, an inequality which restricts the value of « to the regime
[19,20]:

0<oa<2. (17)
From Eqgs. (12), (15), and (16) one also finds

1
pr=3[T+(p-p]=0 (18)

4. Lower bound on the compactness of the matter distributions

In the present section we shall derive a lower bound on the
compactness, max,{2m(r)/r}, of the regular field configurations. To
that end, we shall first analyze the behavior of the pressure func-
tion P(r) in the asymptotic regimes r — 0 and r — oo:

(1) From Egs. (4) and (11) one finds p’(r) = 2(pr — p)/r as
r — 0. Regularity of p(r) therefore requires p(0) = pr(0) > 0 [see
Eq. (18)], which implies [21]

P(r— 0)—0". (19)

(2) From Egs. (5) and (14) one finds P’(r) >~ 2rpr as r — oo,
which implies [22]

P'(r— o0) — 0. (20)

In addition, from Eqs. (9) and (15) one learns that p(r) should ap-
proach zero faster than r—3 at spatial infinity, which implies [23]
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