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The electron propagator in a laser background has been shown to be made up of a series of sideband
poles. In this paper we study this decomposition by analysing the impact on the sidebands of the residual
gauge freedom in the Volkov solution. We show that these gauge transformations do not alter the
location of the poles although the wave function renormalisation is gauge dependent. Our identification
of the propagator from the diagonal part of the two-point function in the laser background is maintained

but we show that the sideband structures mix under residual gauge transformations.
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1. Introduction

The recent rapid progress in laser technologies offers a timely
testing ground for quantum field theory techniques associated with
non-trivial backgrounds [1]. In this paper we are going to study
charge propagation in such a background. A novel feature of a
propagating charge in a laser is that it is indistinguishable from
a charge which absorbs a given number of laser photons and also
emits the same number of photons degenerate with the laser. Such
laser induced degeneracies have a close parallel with the soft and
collinear degeneracies associated with the infrared regime in both
QED and QCD [2-5] while the induced mass effects in a laser
background should help to refine our understanding of the current
versus constituent mass distinction in QCD [6]. Note that building
upon experience with QED in a vacuum, the two-point function
in a laser background is usually referred to as the propagator.
Through interactions with the background this two-point function
includes diagrams where the initial and final momenta of the mat-
ter field are not the same. The approach we are taking projects out
the diagonal part of this two-point function and does not include
momentum changing vertex type effects. This is what we mean by
the propagator in the rest of what follows.

In QED we usually expand around the free theory but in a laser
background we can take the simplest description, the interacting
Volkov solution [7,8], as our starting point. This solution is much
richer than in the normal perturbative vacuum and, as we will
summarise below, alters the propagator which becomes a sum of
so-called sideband poles [9-11]. As this is not a free theory, the
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matter field is not gauge invariant and in this paper we address
the effects of local gauge transformations on this solution and the
propagator, see also [12].

We recall [7] that the solutions of a scalar field in a plane
wave background are distorted. For a linearly polarised background
where the vector potential is given by

A (x) =ay cos(k - x), (M

and where the constant amplitude a,, is space-like and taking the
null vector k* to be spatially aligned along the laser direction, the
matter field is described by

ap
Pv(x) = / W(D(X’ p)av(p) + D(x, —p)b}(p)), (2)
p
where
D(x, p) = e—ip-Xgileu sin(k-x)+e2v sin(2k-x)) ’ 3)
and
p-a a?

d v= . 4
p-k 8p -k “)
In this expression the momentum p appearing in the propagator
is on-shell at m, where the laser shifted mass [9,13-16] is
p? =m.? =m* - Je’d’. (5)
In this paper we do not explicitly distinguish between on-shell and
off-shell momenta as it has no impact on our discussion of gauge
dependence. See [17] for a fuller discussion.

0370-2693/© 2014 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.


http://dx.doi.org/10.1016/j.physletb.2014.11.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
mailto:dmcmullan@plymouth.ac.uk
http://dx.doi.org/10.1016/j.physletb.2014.11.014
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.11.014&domain=pdf

422 M. Lavelle, D. McMullan / Physics Letters B 739 (2014) 421-424

We recall further that (2) may be written as a sum over modes
v = (0, (6)
n
where

P iepxink. 2
¢>n(X)=/ (e P*e!™X ] (eu, e“v)av(p)
2E;

+ elPXeltkX | (ey, —ezv)bI,(p)), (7)

and the generalised Bessel function, Jn(eu,e?v), is defined in
terms of Bessel functions via

Jn(eu,e*v) =" Jnareu) Jr(e?v). (8)

The Volkov propagator contains not just the standard pole
i/(p? — m,?) familiar from perturbation theory but also infinitely
many sideband poles of the form i/((p + nk)> — m,2) where n
is any integer [13,18-21]. As we have previously identified [17],
the propagator is not given by the two-point function of the full
Volkov field but is identified as the diagonal part of the two-point
function in the vacuum |0)y picked out by the Volkov annihilation
operators:

iDy(x—y) =Y v(OITen(X)$}(¥)I0}v. (9)

This is to ensure that the propagator represents processes where
there is a fixed momentum flow through the matter field. This can
also be understood [17] in terms of degenerate processes extend-
ing the Lee-Nauenberg [4| characterisation of the infrared prob-
lem [5].

The form of the vector potential chosen here requires that
k - a =0 which corresponds from (1) to a Landau like gauge as
duA* =0. In [17] the propagator was constructed in this gauge.
The mass shift and wave function renormalisations were calculated
to all orders in an operator formalism. This was further verified
to the first few orders by explicit diagrammatic calculations. Each
term in the sum (9) generates a separate, so-called sideband struc-
ture:

/ d*xe POy (O[T (6n (O (1) 0}

z8 . v)
T (p+nk)2 —m2 +ie’

showing the common mass shift and distinct wave function renor-
malisations of the sidebands. For the detailed form of Z, see [17].
Here p is off-shell. It has been argued that the central sideband,
corresponding to n =0 and produced by the ¢o(x) mode, may
dominate in some regimes [18]. In this paper we want to address
the issue of the residual gauge freedom which is opened up by the
boundary conditions imposed on the plane wave laser background.

Below we will show that, although the Volkov field transforms
with the expected phase shift characteristic of a charged matter
field under such a residual gauge transformation, the modes (6)
actually mix with each other in a non-trivial manner. This mixing
of the modes raises a question about whether the above identifica-
tion of the propagator (9) is consistent with gauge transformations.
We will demonstrate below that the construction of the propaga-
tor is robust under such transformations and that the overall effect
of gauge transformations may be absorbed into shifts of the wave
function renormalisation factors.

We therefore now turn to the gauge freedom in the Volkov for-
malism, its effects on the various modes of the Volkov field and

(10)

thus build up the diagonal sum (9). Although our conclusions hold
to all orders, we shall, for illustrative purposes, demonstrate them
perturbatively.

2. Residual gauge transformations

There is in the Landau gauge fixed solution discussed above a
residual gauge freedom as we can make the replacement

Ap(x) — Ap(x) + 0,0 (x), (11)

where A(x) = Asin(k - x) and A is a constant. This corresponds to
the amplitude shift

ay, — ay + Ak, (12)

which still preserves our Landau gauge choice due to the null na-
ture of k. We note that this gauge freedom preserves the plane
wave character of the background laser potential which is why we
restrict to it. Under this transformation we have, from (4),

u—u—»Xi and v-—v. (13)

Similarly the distortion factor transforms as

D(x, p) — e *®D(x, p). (14)

From (2) we see the phase shift

Pv(x) — e Mgy (x), (15)

as would be expected of a charged matter field under gauge trans-
formations. This is a local gauge transformation and, as the field
extends to spatial infinity along the laser direction, the transforma-
tion does not vanish asymptotically along the laser. This residual
gauge transformation is consistent both with our original Landau
gauge condition and the boundary conditions of the Volkov solu-
tion.

We now want to analyse the impact of the gauge freedom on
the various modes of the Volkov field. As the propagator is con-
structed from the diagonal sum over the modes (9) it is crucial
that we know how they transform. In (7) the generalised Bessel
functions, through their dependence on u, are responsible for the
gauge dependence of the fields

Jn(eu, ezv) — Jn(e(u—2), ezv)
=Y Jm(€X) Jntm(eu, e*v). (16)

where we used (13). This means that the Volkov modes mix under
such a local gauge transformation as

Pn(X) = > Js(eMpnysx)e S, (17)

with a Bessel function dependent weighting. More complicated
mixing would presumably occur if a gauge transformation was
used which took us outside of the plane wave Volkov solution.
It is useful here to verify that this is consistent with the overall
transformation of the Volkov field. From (6) we have

V() > DY Js@)pnys(x)e KX, (18)
n N
Shifting the label n and using the standard result

ew sin(k-x) _ Zeirk-xjr(e)7 (19)
r

we find that the Volkov field
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