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We propose a unified framework that reconciles the stunning success of MOND on galactic scales 
with the triumph of the �CDM model on cosmological scales. This is achieved through the physics of 
superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense 
to form a superfluid in galaxies, with ∼mK critical temperature. The superfluid phonons mediate a 
MOND acceleration on baryonic matter. Our framework naturally distinguishes between galaxies (where 
MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in 
clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of 
superfluidity leads to a number of striking observational signatures.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The standard � Cold Dark Matter (�CDM) model does very 
well at fitting large scale observables. On galactic scales, however, 
a number of challenges have emerged. Disc galaxies display a tight 
correlation between total baryonic mass and asymptotic velocity, 
Mb ∼ v4

c , known as the Baryonic Tully–Fisher Relation (BTFR) [1,2]. 
Hydrodynamical simulations can reproduce the BTFR by tuning 
baryonic feedback processes, but their stochastic nature naturally 
results in a much larger scatter [3]. Furthermore, the mass [4,5]
and phase-space [6–9] distributions of dwarf satellites in the Local 
Group are puzzling.

A radical alternative is MOdified Newtonian Dynamics (MOND) 
[10], which replaces dark matter (DM) with a modification of grav-
ity at low acceleration: a � aN (aN � a0); a � √

aNa0 (aN � a0), 
with best-fit value a0 � 1.2 × 10−8 cm/s2. This empirical force 
law has been remarkably successful at explaining a wide range 
of galactic phenomena [11]. In the MOND regime, a test parti-
cle orbits an isolated source according to v2/r = √

GNMba0/r2. 
This gives a constant asymptotic velocity, v2

c = √
GNMba0, which 

in turn implies the BTFR.
The empirical success of MOND, however, is limited to galaxies. 

The predicted temperature profile in galaxy clusters conflicts with 
observations [12]. The Tensor–Vector–Scalar (TeVeS) relativistic ex-
tension [13] fails to reproduce the CMB and matter spectra [14,
15]. The lensing features of merging clusters [16,17] are problem-
atic [18]. This has motivated various hybrid proposals that include 
both DM and MOND, e.g., [19–23].
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In this Letter, together with a longer companion paper [24], 
we propose a novel framework that unifies the DM and MOND 
phenomena through the physics of superfluidity. There are two 
central ideas underlying our work, which must be carefully dis-
tinguished. The first is the very general idea that DM forms a 
superfluid inside galaxies, with a coherence length of order the 
size of galaxies. The critical temperature is ∼mK, which intrigu-
ingly is comparable to Bose–Einstein condensation (BEC) critical 
temperatures for cold atom gases. Indeed, in many ways our DM 
behaves like cold dark atoms. The generic idea of DM superfluidity 
leads to a number of remarkable observational consequences. The 
superfluid nature of DM dramatically changes its macroscopic be-
havior in galaxies. Instead of evolving as independent particles, DM 
is more aptly described as collective excitations. The second central 
idea is the postulate that superfluid phonons mediate a MOND-like 
force between baryons. Since superfluidity only occurs at low tem-
perature, our framework naturally distinguishes between galaxies 
(where MOND is successful) and galaxy clusters (where MOND is 
not). Due to the larger velocity dispersion in clusters, DM has a 
higher temperature and hence is in a mixture of superfluid and 
normal phases [25–27].

The superfluid interpretation makes the non-analytic nature of 
the MOND scalar action more palatable. The Unitary Fermi Gas, 
which has attracted much excitement in cold atom physics [28], 
is also governed by a non-analytic kinetic term [29]. Our equation 
of state P ∼ ρ3 suggests that the DM superfluid arises through 
three-body interactions. It would be fascinating to find precise cold 
atom systems with the same equation of state, as this would give 
important insights on the microphysical interactions underlying 
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Fig. 1. Fraction of DM particles in the condensate.

our superfluid. Tantalizingly, this might allow laboratory simula-
tions of galactic dynamics.

The idea of DM BEC has been studied before [30–34], with im-
portant differences from our work. In BEC DM galactic dynamics 
are caused by the condensate density profile; in our case phonons 
play a key role in explaining the BTFR. Moreover, BEC DM has 
P ∼ ρ2 instead of ∼ρ3. This implies a much lower sound speed, 
which puts BEC DM in tension with observations [35].

DM condensation: In order for DM particles to condense in 
galaxies, their de Broglie wavelength λdB ∼ (mv)−1 must be 
larger than the interparticle separation � ∼ (m/ρvir)

1/3. From 
standard collapse theory, the density at virialization is ρvir �
(1 + zvir)

3 5.4 × 10−28 g/cm3, while the virial velocity is v =
113 M1/3

12

√
1 + zvir km/s, where M12 ≡ M/1012M	 . Thus λdB � �

implies

m � 2.3 (1 + zvir)
3/8 M−1/4

12 eV . (1)

We work in h̄ = 1 units.
The second condition is that DM thermalizes, with temperature 

set by the virial velocity v . The interaction rate is � ∼ N vρvir
σ
m , 

where N ∼ ρvir
m

(2π)3

4π
3 (mv)3 is the Bose enhancement factor. The rate 

should be larger than the inverse dynamical time tdyn ∼ 1√
GNρvir

, 
such that the coherence length will span the halo. This translates 
into a bound on the cross section (with meV ≡ m/eV):

σ/m � (1 + zvir)
−7/2 m4

eVM2/3
12 52 cm2/g . (2)

Later on, we will adopt m = 0.6 eV as a fiducial value. For M12 = 1
and zvir = 2, the inequality becomes σ/m � 0.1 cm2/g. The lower 
end is consistent with current constraints [36–38] on σ/m for self-
interacting dark matter (SIDM) [39], though these constraints must 
be carefully revisited in the superfluid context.

The critical temperature, obtained by equipartition kBTc =
1
3 mv2

c , is in the mK range:

Tc = 6.5 m−5/3
eV (1 + zvir)

2 mK . (3)

For 0 < T < Tc, the system is a mixture of condensate and nor-
mal components. The fraction of condensed particles, 1 − (T /Tc)

3/2

[40], is shown in Fig. 1 as a function of halo mass assuming 
zvir = 0. For m � eV, galaxies are almost completely condensed 
while massive clusters have a significant normal component. Also, 
since Tc depends on redshift, halos at higher redshift tend to have 
more superfluid than the ones formed more recently.

Superfluid phase: The relevant low-energy degrees of freedom of 
a superfluid are phonons, described by a scalar field θ . In the pres-
ence of a gravitational potential 
, the non-relativistic effective 
action is L = P (X), where X = θ̇ − m
 − ( 
∇θ)2/2m [29]. The na-
ture of the superfluid (i.e., its equation of state) is encoded in the 

Fig. 2. Numerical solution of Lane–Emden equation.

choice of P . Up to this point, the discussion has been very gen-
eral. However, in order to endow our superfluid with MOND-like 
phenomenology, we conjecture that DM superfluid phonons are 
governed by the MOND action [41]

L = 2
3 �(2m)3/2 X

√|X | − α �
MPl

θρb , (4)

where � is a mass scale, ρb is the baryonic matter density, and 
α is a dimensionless constant. This action should only be trusted 
away from X = 0, as we will see later. The matter coupling breaks 
the shift symmetry at the 1/MPl level and is thus technically nat-
ural. Remarkably (4) is strikingly reminiscent of the Unitary Fermi 
Gas, LUFG(X) ∼ X5/2, which is also non-analytic [29].

The phonon action (4) uniquely fixes the properties of the 
condensate through standard thermodynamics. At finite chemical 
potential, θ = μt , and ignoring 
, the pressure is given by the La-
grangian density:

P (μ) = 2
3 �(2mμ)3/2 . (5)

This is the grand canonical equation of state P = P (μ) for the con-
densate. The number density, n = ∂ P/∂μ, is

n = �(2m)3/2μ1/2 . (6)

Combining these expressions with ρ = mn, we obtain

P = ρ3

12�2m6 . (7)

This is a polytropic equation of state P ∼ ρ1+1/n with index n =
1/2. In comparison, BEC DM has P ∼ ρ2 [32].

Including phonons excitations θ = μt + φ, the quadratic action 
for φ is Lquad = �(2m)3/2

4μ1/2

(
φ̇2 − 2μ

m ( 
∇φ)2
)

. The sound speed can be 
immediately read off:

cs = √
2μ/m . (8)

Using (7), we compute the static, spherically-symmetric density 
profile of the DM condensate halo. Introducing dimensionless vari-

ables ρ = ρ0� and r =
√

ρ0
32πGN�2m6 ξ , with ρ0 denoting the cen-

tral density, hydrostatic equilibrium implies the Lane–Emden equa-
tion, 

(
ξ2�′)′ = −ξ2�1/2, with boundary conditions �(0) = 1 and 

�′(0) = 0. The numerical solution is shown in Fig. 2. It vanishes 
at ξ1 � 2.75, which defines the halo size: R =

√
ρ0

32πGN�2m6 ξ1. 
Meanwhile the central density is related to the halo mass as [42]
ρ0 = 3M

4π R3
ξ1|�′(ξ1)| , with �′(ξ1) � −0.5. Combining these results, we 

obtain:

ρ0 � M2/5
12 m18/5

eV �
6/5
meV 7 × 10−25 g/cm3 ;

R � M1/5
12 m−6/5

eV �
−2/5
meV 36 kpc , (9)
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