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We discuss a hydrodynamical description of the eigenvalues of the Polyakov line at large but finite N, for
Yang-Mills theory in even and odd space-time dimensions. The hydro-static solutions for the eigenvalue
densities are shown to interpolate between a uniform distribution in the confined phase and a localized
distribution in the de-confined phase. The resulting critical temperatures are in overall agreement with
those measured on the lattice over a broad range of N, and are consistent with the string model results

at N. = oco. The stochastic relaxation of the eigenvalues of the Polyakov line out of equilibrium is captured
by a hydrodynamical instanton. An estimate of the probability of formation of a Z(N.) bubble using a
piece-wise sound wave is suggested.
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1. Introduction

Lattice simulations of Yang-Mills theory in even and odd di-
mensions show that the confined phase is center symmetric [1,2].
At high temperature Yang-Mills theory is in a deconfined phase
with broken center symmetry. The transition from a center sym-
metric to a center broken phase is non-perturbative and is the
topic of intense numerical and effective model calculations [3] (and
the references therein). Of particular interest are the semi-classical
descriptions and matrix models.

In the semi-classical approximations, the confinement-decon-
finement transition is understood as the breaking of instantons
into a dense plasma of dyons in the confined phase and their re-
assembly into instanton molecules in the deconfined phase [4,5].
This mechanism is similar to the Berezinskii-Kosterlitz-Thouless
transition in lower dimensions [6], and to the transition from in-
sulators to superconductors in topological materials [7]. In matrix
models, the Yang-Mills theory is simplified to the eigenvalues of
the Polyakov line and an effective potential is used with param-
eters fitted to the bulk pressure to study such a transition [8,9],
in the spirit of the strong coupling transition in the Gross-Witten
model [10].

Matrix models for the Polyakov line share much in common
with unitary matrix models in the general context of random
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matrix theory [11]. The canonical example is Dyson circular uni-
tary ensemble and its analysis in terms of orthogonal polynomials
or a one-component Coulomb plasma. The Dyson circular uni-
tary ensemble relates to the one-dimensional Calogero-Sutherland
model [12] which is an effective model for quantum Luttinger lig-
uids.

A useful analysis of one-dimensional interacting electron sys-
tems relies on hydrodynamics which does not require an exact
solution of the many-body problem. The method treats the system
in the continuum limit as a fluid, and allows for the understand-
ing of both small amplitude collective phenomena (phonons) as
well as large amplitude effects (solitons, schocks) [13,14]. A re-
duction of the many-body Hamiltonian onto the hydrodynamical
collective degrees of freedom makes use of the collective quantiza-
tion method developed in the context of quantum field theory [15]
and extended to problems in condensed matter physics [16].

In this letter we develop a hydrodynamical description of the
gauge invariant eigenvalues of the Polyakov line for an SU(N.)
Yang-Mills theory at large but finite N.. We will use it to derive
the following new results: 1/ a hydrostatic solution for the eigen-
value density that interpolates between a confining (uniform) and
de-confining (localized) phase; 2/ explicit critical temperatures for
the Yang-Mills transitions in 142 and 1+ 3 dimensions; 3/ a hy-
drodynamical instanton for the density distribution that captures
the stochastic relaxation of the eigenvalues of the Polyakov line;
4/ an estimate of the fugacity or probability to form a Z(N;) bub-
ble using a piece-wise sound-wave.
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2. Polyakov line in 1 + 2 dimensions

The matrix model partition function for the eigenvalues of the
Polyakov line for SU(N.) in 1+ 2 dimensions was discussed in [8].
If we denote by diag(e™®, ..., ec) with 3;6; = 0 the gauge in-
variant eigenvalues of the Polyakov line, then [8]

Ne Ne
Zla, Bl = / Hdgi 1_[ |Zij|ﬁ(T)e*0((T) >icj V(zijh (1)
=1 i<j

with zjj =z; —zj and z; = el The perturbative potential V(zij)
is center symmetric and quadratic in leading order or V (|z;|) ~
|zij|?, with a(T) = T?V,/2 and V5 the spatial 2-volume [8].
The mass expansion of the one-loop determinant gives B(T) =
m% Vo /m [8]. The Debye mass is self-consistently defined as m% =
Ncg?T(In(T /mp) + C)/2m [17] to tame all infra-red divergences,
with C ~ 1.3 from lattice simulations [18,19].

(1) can be regarded as the normalization of the squared and
real many-body wave-function Wy[z;] which is the zero-mode so-
lution to the Shrédinger equation HoWo = 0 with the self-adjoint
squared Hamiltonian

Ne¢
Ho= )" (=0 +a) (3 +ai) (2)
i=1
with 9; =9/06; and the pure gauge potential a; = 9;S. Here S[z] =
—InWp[z] is half the energy in the defining partition function
in (1). In (2) the mass parameter is 1/2.

3. Hydrodynamics

We can use the collective coordinate method in [15] to re-write
(2) in terms of the density of eigenvalues as a collective variable
pO) = Zf’z‘l 8(0 — 6;). For that, we re-define Hy — H through a
similarity transformation to re-absorb the diverging 2-body part
induced by the Vandermond contribution A = TT;_; 12", ie.

v = lIJO/«/Z and ~/A H = Ho/A. Now H is of the general form
discussed in [15] and is amenable after some algebra to

H= f dé (37 dg7r + pulp]) (3)
with the potential-like contribution

T B(T 1 2
ulp] = (A(Q) - M + 5391np> =A’ (4)
Here

AO) = %oz(T)/dO’p(Q’) dV (2 sin<

0—0
. )) (5)

and pp is the periodic Hilbert transform of p

0—0
. ) 6)

As conjugate pairs, 7 (0) and p(0) satisfy the equal-time commu-
tation rule [77(8), p(0")] = —i (8(0 —6') — 1/27). We identify the
collective fluid velocity with v = dgr and re-write (3) in the more
familiar hydrodynamical form

1P
(ol = pu () = 5;/,0(6’) cotan(

H~ f dop(©) (v2 +ulp]) ~ / dop(9)|v + AP (7)

modulo ultra-local terms. The Heisenberg equation for o yields
the current conservation law d;p = —29y (pv), and the Heisenberg
equation for v gives the Euler equation

v =i[H,v]=
—dp (v2 + A% — A — Adglnp + 7 BIAPTH — 2a[A,0]5) (8)

with the sine-transform [Ap]s = [ sin(6 — 6")A(0")p(0’). Note that
all the relations hold for large but finite N..

4. Hydro-static solution

The static hydrodynamical density follows from the minimum
of (6) with v(0) =0,

B(M)mpH(8) — dlnp(0) =2A(0) 9)
To solve (9), we insert the leading quadratic contribution A(9) ~
2a(T)sin®(©/2) in (9)

PPH — adpp = bcy p sin(®) (10)
with a =1/78(T), b =2(T)/B(T) and c; the first moment of

the density or ¢ = fOZ” p(0)cosddo. Let pg = N¢/2m be the uni-
form eigenvalue density and p1 = p — po its deviation. Consider
the Cauchy transform

1
6= [ 2 (1)
C

with n =e!. The contour C is counter-clockwise along the unit
circle. G(z) is a holomorphic function in the complex z-plane. Let
G* and G~ be its realization inside and outside C respectively, so
that

Gz — €)= +p1(0) +ipn(®) (12)

We now carry the Hilbert transform on both sides of (10). Setting
G(z) = G*(2) and using 2[p1 puln = p}, — p?, we have for (10)

1 1 1
EG2 +(po — Fber(z - 271G +azd,G = bcy poz + Ebc%
(13)

on the boundary C, thus within the circle. Here, we should require
G(z=0) =0 to ensure that p; integrates to zero.

a=1/V, is subleading and will be dropped. Thus (13) is alge-
braic in G(z). Since p(8) = po + Re GT(z = e'?), careful considera-
tions of the singularity structures of the quadratic solutions to (13)
yield (® is a step function)

p(6) = v/bcr (cosd + 1)2 (cosd — cosb) 2 O (|6 — [6]) (14)

The analytic properties of G(z) fix c1/po=1+ (1 — 1/b)% and 6y
at cosfp =1 —2pg/bcq. For b <1 the non-uniform solution with
p1#0 is absent. For b > 1, c; — 2pp and

pO) > ;V—;\/Sb—4b202 (15)

Therefore (14) interpolates between a uniform density distribu-
tion po (confined phase) and a Wigner semi-circle (deconfined
phase) with a transition at b=1 or T, =mp. In 1 4+ 2 dimen-
sions the fundamental string tension is given to a good accuracy
by /o1/g*Ne = ((1 — 1/N§)/8n)% [22]. Thus the ratio in 1+ 2
dimensions

1
I =£<8—”>2_> 2c (16)
Vo1 2w \1-1/N? T

with C ~ 1.3 [18,19]. In Fig. 1 we show the behavior of (16) (up-
per curve) versus N¢, in comparison to the numerical fit T/ /o1 =
0.9026 + 0.880/Nf to the lattice results (lower curve) in [23].
Amusingly, (16) at large N, is consistent with /3/m in the string
model [20].
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