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We discuss a hydrodynamical description of the eigenvalues of the Polyakov line at large but finite Nc for 
Yang–Mills theory in even and odd space-time dimensions. The hydro-static solutions for the eigenvalue 
densities are shown to interpolate between a uniform distribution in the confined phase and a localized 
distribution in the de-confined phase. The resulting critical temperatures are in overall agreement with 
those measured on the lattice over a broad range of Nc , and are consistent with the string model results 
at Nc = ∞. The stochastic relaxation of the eigenvalues of the Polyakov line out of equilibrium is captured 
by a hydrodynamical instanton. An estimate of the probability of formation of a Z(Nc) bubble using a 
piece-wise sound wave is suggested.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Lattice simulations of Yang–Mills theory in even and odd di-
mensions show that the confined phase is center symmetric [1,2]. 
At high temperature Yang–Mills theory is in a deconfined phase 
with broken center symmetry. The transition from a center sym-
metric to a center broken phase is non-perturbative and is the 
topic of intense numerical and effective model calculations [3] (and 
the references therein). Of particular interest are the semi-classical 
descriptions and matrix models.

In the semi-classical approximations, the confinement–decon-
finement transition is understood as the breaking of instantons 
into a dense plasma of dyons in the confined phase and their re-
assembly into instanton molecules in the deconfined phase [4,5]. 
This mechanism is similar to the Berezinskii–Kosterlitz–Thouless 
transition in lower dimensions [6], and to the transition from in-
sulators to superconductors in topological materials [7]. In matrix 
models, the Yang–Mills theory is simplified to the eigenvalues of 
the Polyakov line and an effective potential is used with param-
eters fitted to the bulk pressure to study such a transition [8,9], 
in the spirit of the strong coupling transition in the Gross–Witten 
model [10].

Matrix models for the Polyakov line share much in common 
with unitary matrix models in the general context of random 
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matrix theory [11]. The canonical example is Dyson circular uni-
tary ensemble and its analysis in terms of orthogonal polynomials 
or a one-component Coulomb plasma. The Dyson circular uni-
tary ensemble relates to the one-dimensional Calogero–Sutherland 
model [12] which is an effective model for quantum Luttinger liq-
uids.

A useful analysis of one-dimensional interacting electron sys-
tems relies on hydrodynamics which does not require an exact 
solution of the many-body problem. The method treats the system 
in the continuum limit as a fluid, and allows for the understand-
ing of both small amplitude collective phenomena (phonons) as 
well as large amplitude effects (solitons, schocks) [13,14]. A re-
duction of the many-body Hamiltonian onto the hydrodynamical 
collective degrees of freedom makes use of the collective quantiza-
tion method developed in the context of quantum field theory [15]
and extended to problems in condensed matter physics [16].

In this letter we develop a hydrodynamical description of the 
gauge invariant eigenvalues of the Polyakov line for an SU(Nc)

Yang–Mills theory at large but finite Nc . We will use it to derive 
the following new results: 1/ a hydrostatic solution for the eigen-
value density that interpolates between a confining (uniform) and 
de-confining (localized) phase; 2/ explicit critical temperatures for 
the Yang–Mills transitions in 1 + 2 and 1 + 3 dimensions; 3/ a hy-
drodynamical instanton for the density distribution that captures 
the stochastic relaxation of the eigenvalues of the Polyakov line; 
4/ an estimate of the fugacity or probability to form a Z(Nc) bub-
ble using a piece-wise sound-wave.
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2. Polyakov line in 1 + 2 dimensions

The matrix model partition function for the eigenvalues of the 
Polyakov line for SU(Nc) in 1 + 2 dimensions was discussed in [8]. 
If we denote by diag(eiθ1 , . . . , eiθNc ) with 

∑
i θi = 0 the gauge in-

variant eigenvalues of the Polyakov line, then [8]

Z [α,β] =
∫ Nc∏

i=1

dθi

Nc∏
i< j

|zi j|β(T )e−α(T )
∑

i< j V (|zi j |) (1)

with zi j = zi − z j and zi = eiθi . The perturbative potential V (zi j)

is center symmetric and quadratic in leading order or V (|zi j|) ≈
|zi j |2, with α(T ) = T 2 V 2/2π and V 2 the spatial 2-volume [8]. 
The mass expansion of the one-loop determinant gives β(T ) =
m2

D V 2/π [8]. The Debye mass is self-consistently defined as m2
D =

Nc g2T (ln(T /mD) + C)/2π [17] to tame all infra-red divergences, 
with C ≈ 1.3 from lattice simulations [18,19].

(1) can be regarded as the normalization of the squared and 
real many-body wave-function �0[zi] which is the zero-mode so-
lution to the Shrödinger equation H0�0 = 0 with the self-adjoint 
squared Hamiltonian

H0 ≡
Nc∑

i=1

(−∂i + ai) (∂i + ai) (2)

with ∂i ≡ ∂/∂θi and the pure gauge potential ai ≡ ∂i S . Here S[z] =
−ln�0[z] is half the energy in the defining partition function 
in (1). In (2) the mass parameter is 1/2.

3. Hydrodynamics

We can use the collective coordinate method in [15] to re-write 
(2) in terms of the density of eigenvalues as a collective variable 
ρ(θ) = ∑Nc

i=1 δ(θ − θi). For that, we re-define H0 → H through a 
similarity transformation to re-absorb the diverging 2-body part 
induced by the Vandermond contribution 
 = ∏

i< j |zi j|β(T ) , i.e. 
� = �0/

√

 and 

√

 H = H0

√

. Now H is of the general form 

discussed in [15] and is amenable after some algebra to

H =
∫

dθ (∂θπρ ∂θπ + ρu[ρ]) (3)

with the potential-like contribution

u[ρ] =
(

A(θ) − πβ(T )ρH

2
+ 1

2
∂θ lnρ

)2

≡ A2 (4)

Here

A(θ) = 1

2
α(T )

∫
dθ ′ρ(θ ′) ∂θ V

(
2 sin

(
θ − θ ′

2

))
(5)

and ρH is the periodic Hilbert transform of ρ

[ρ]H ≡ ρH (θ) = 1

2

P

π

∫
ρ(θ ′) cotan

(
θ − θ ′

2

)
(6)

As conjugate pairs, π(θ) and ρ(θ) satisfy the equal-time commu-
tation rule [π(θ), ρ(θ ′)] = −i 

(
δ(θ − θ ′) − 1/2π

)
. We identify the 

collective fluid velocity with v = ∂θπ and re-write (3) in the more 
familiar hydrodynamical form

H ≈
∫

dθρ(θ)
(

v2 + u[ρ]
)

≈
∫

dθρ(θ) |v + iA|2 (7)

modulo ultra-local terms. The Heisenberg equation for ρ yields 
the current conservation law ∂tρ = −2∂θ (ρv), and the Heisenberg 
equation for v gives the Euler equation

∂t v = i[H, v] =
−∂θ

(
v2 + A2 − ∂θ A − A∂θ lnρ + πβ[Aρ]H − 2α[Aρ]S

)
(8)

with the sine-transform [Aρ]S = ∫
sin(θ − θ ′)A(θ ′)ρ(θ ′). Note that 

all the relations hold for large but finite Nc .

4. Hydro-static solution

The static hydrodynamical density follows from the minimum 
of (6) with v(θ) = 0,

β(T )πρH (θ) − ∂θ lnρ(θ) = 2A(θ) (9)

To solve (9), we insert the leading quadratic contribution A(θ) ≈
2α(T )sin2(θ/2) in (9)

ρρH − a∂θρ = bc1ρ sin(θ) (10)

with a ≡ 1/πβ(T ), b ≡ 2α(T )/β(T ) and c1 the first moment of 
the density or πc1 ≡ ∫ 2π

0 ρ(θ)cosθdθ . Let ρ0 = Nc/2π be the uni-
form eigenvalue density and ρ1 = ρ − ρ0 its deviation. Consider 
the Cauchy transform

G(z) = 1

π i

∫
C

ρ1(η)

η − z
dη (11)

with η = eiθ . The contour C is counter-clockwise along the unit 
circle. G(z) is a holomorphic function in the complex z-plane. Let 
G+ and G− be its realization inside and outside C respectively, so 
that

G±(z → eiθ ) = ±ρ1(θ) + iρH (θ) (12)

We now carry the Hilbert transform on both sides of (10). Setting 
G(z) = G+(z) and using 2[ρ1ρH ]H = ρ2

H − ρ2
1 , we have for (10)

1

2
G2 + (ρ0 − 1

2
bc1(z − z−1))G + az∂zG = bc1ρ0z + 1

2
bc2

1

(13)

on the boundary C , thus within the circle. Here, we should require 
G(z = 0) = 0 to ensure that ρ1 integrates to zero.

a ≈ 1/V 2 is subleading and will be dropped. Thus (13) is alge-
braic in G(z). Since ρ(θ) = ρ0 + Re G+(z = eiθ ), careful considera-
tions of the singularity structures of the quadratic solutions to (13)
yield (� is a step function)

ρ(θ) =
√

bc1(cosθ + 1)
1
2 (cosθ − cosθ0)

1
2 �(|θ0| − |θ |) (14)

The analytic properties of G(z) fix c1/ρ0 = 1 + (1 − 1/b)
1
2 and θ0

at cos θ0 = 1 − 2ρ0/bc1. For b < 1 the non-uniform solution with 
ρ1 	= 0 is absent. For b 
 1, c1 → 2ρ0 and

ρ(θ) → Nc

2π

√
8b − 4b2θ2 (15)

Therefore (14) interpolates between a uniform density distribu-
tion ρ0 (confined phase) and a Wigner semi-circle (deconfined 
phase) with a transition at b = 1 or Tc = mD . In 1 + 2 dimen-
sions the fundamental string tension is given to a good accuracy 
by 

√
σ1/g2Nc = ((1 − 1/N2

c )/8π)
1
2 [22]. Thus the ratio in 1 + 2

dimensions

Tc√
σ1

= C

2π

(
8π

1 − 1/N2
c

) 1
2 →

√
2

π
C (16)

with C ≈ 1.3 [18,19]. In Fig. 1 we show the behavior of (16) (up-
per curve) versus Nc , in comparison to the numerical fit Tc/

√
σ1 =

0.9026 + 0.880/N2
c to the lattice results (lower curve) in [23]. 

Amusingly, (16) at large Nc is consistent with 
√

3/π in the string 
model [20].
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