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This paper analyzes the supersymmetric solutions to five and six-dimensional minimal (un)gauged 
supergravities for which the bilinear Killing vector constructed from the Killing spinor is null. We 
focus on the spacetimes which admit an additional SO(1, 1) boost symmetry. Upon the toroidal 
dimensional reduction along the Killing vector corresponding to the boost, we show that the solution 
in the ungauged case describes a charged, nonextremal black hole in a Friedmann–Lemaître–Robertson–
Walker (FLRW) universe with an expansion driven by a massless scalar field. For the gauged case, the 
solution corresponds to a charged, nonextremal black hole embedded conformally into a Kantowski–
Sachs universe. It turns out that these dimensional reductions break supersymmetry since the bilinear 
Killing vector and the Killing vector corresponding to the boost fail to commute. This represents a new 
mechanism of supersymmetry breaking that has not been considered in the literature before.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Over the last two decades, many developments of superstring 
theory have been triggered by supersymmetric solutions in su-
pergravities. In particular, supersymmetric black holes played a 
key role for the first successful account for the microscopic ori-
gin of the Bekenstein–Hawking entropy [1]. Recently a system-
atic classification of supersymmetric solutions has been devel-
oped and proved useful for obtaining supersymmetric black ob-
jects with various topologies (see e.g. [2–13] for an incomplete 
list). The supersymmetric solutions are divided into two cate-
gories, according to the causal character of the vector field con-
structed from the Killing spinor, i.e., timelike and null classes. Typ-
ically, the timelike class of solutions contains black holes, whereas 
the null family contains propagating waves. The timelike class 
of metrics in ungauged supergravities is specified by a set of 
harmonic/Poisson-type functions on a (d − 1)-dimensional man-
ifold with reduced holonomy over which the metric is fibered. 
It therefore follows that supersymmetric black holes belonging 
to the timelike class are time-independent with degenerate hori-
zons and allow for a superposition principle, as inferred from 
the Majumdar–Papapetrou solution. This represents a situation in 
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which gravitational and electromagnetic fields are in mechanical 
equilibrium.

More than twenty years ago, Kastor and Traschen discovered 
an interesting generalization of the Majumdar–Papapetrou solution 
in the Einstein–Maxwell-�(> 0) system [14]. The Kastor–Traschen 
solution is characterized by a harmonic function on R3 with an 
additional time-dependence and asymptotically tends to the de Sit-
ter universe. When the harmonic function has a single monopole 
source at the center of R3, the metric describes a black hole with 
a bifurcate Killing horizon in the de Sitter universe, i.e., the luke-
warm limit of the Schwarzschild–de Sitter black hole [15]. The 
superposition property of the Kastor–Traschen solution is reminis-
cent of supersymmetric solutions in the timelike class, although a 
positive cosmological constant is not compatible with supersym-
metry. Nevertheless, the Kastor–Traschen solution admits a spinor 
obeying 1st-order differential equations in “fake” supergravity, in 
which the gauge coupling constant in gauged supergravity is an-
alytically continued [16,17]. The superposition property further 
allows to investigate analytically black hole collisions in a (con-
tracting) universe and to test the validity of the cosmic censorship 
conjecture [18].

Later on, Ref. [19] obtained a time-dependent and spatially 
inhomogeneous solution from the time-dependent intersecting 
M2/M2/M5/M5 branes, which reduces to AdS2 × S2 for r → 0, 
and approaches for r → ∞ to the FLRW cosmology with the scale 
factor obeying a(τ ) ∝ τ 1/3. Maeda and one of the present au-
thors verified that this metric indeed describes a black hole in the 
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FLRW universe with regular horizons [20]. The solution was fur-
ther generalized to the case with a Liouville-type scalar potential, 
for which the metric asymptotically tends to an FLRW universe 
with arbitrary power-law expansion [21,22]. These solutions are 
very similar to the Kastor–Traschen solution since they are spec-
ified by some set of harmonic functions on a base space. Inter-
estingly, the event horizon is generated by an asymptotic Killing 
vector and realizes the isolated horizon [23], when each harmonic 
has a point source at the origin. Hence, the area of the horizon 
fails to grow even though the outside region of the black hole is 
highly dynamical. Moreover, it was shown that these solutions are 
pseudo-supersymmetric in “fake” supergravity [24]. Using the gen-
eral classification scheme of [25], further extensions to the case 
with a sum of exponential scalar potentials and to the case includ-
ing rotation were analyzed in Refs. [26,27].

The cosmic expansion of the solution in Ref. [19] is driven 
by a massless scalar field corresponding to a “flat gauging” in 
the context of gauged supergravity. It might therefore be possible 
to embed these solutions into higher-dimensional supersymmet-
ric spacetimes by the Kaluza–Klein mechanism, rather than em-
bedding them into fake supergravity. As we commented, a naive 
Kaluza–Klein reduction does not work, since supersymmetric black 
holes are time-independent and extremal, whereas the solution 
in [19] is time-evolving and non-extremal. To fill this gap is one 
of the main aims of the present article.

We exhibit a class of supersymmetric solutions which can be 
identified as a black hole in an expanding universe upon dimen-
sional reduction. Interestingly, the black hole is time-dependent 
and admits nondegenerate horizons, both of these properties 
counter to those for supersymmetric black holes in the timelike 
class. This is possible because our supersymmetric solutions belong 
to the null family. We discuss how an additional SO(1, 1) scaling 
property gives rise to a Killing vector for the dimensional reduc-
tion and how this Kaluza–Klein reduction breaks supersymmetry. 
This susy breaking mechanism is new, and may have applications 
in other contexts as well.

The remainder of our paper is organized as follows. In the 
next section, we show that the five-dimensional null BPS family in 
minimal (un)gauged supergravity admits solutions describing (af-
ter a KK reduction) a black hole in equilibrium in an expanding 
universe. In section 3, we show how to obtain five-dimensional 
dynamical black holes from a supersymmetric solution in six-
dimensional minimal ungauged supergravity. Section 4 contains 
our conclusions. We employ the mostly plus metric signature 
throughout the article.

2. Black hole from five dimensions

2.1. Ungauged case

The bosonic Lagrangian of five-dimensional ungauged minimal 
supergravity is given by [3]

L(0)
5 = R � 1 − 2F ∧ �F − 8

3
√

3
F ∧ F ∧ A , (2.1)

where F = dA is a Maxwell field. In terms of a Dirac spinor ε , the 
Killing spinor equation reads

∇̂με ≡
[
∇μ + i

4
√

3

(
γμ

νρ − 4δμ
νγ ρ

)
Fνρ

]
ε = 0 . (2.2)

Let us consider the case in which V μ ≡ iε̄γ με is a null vector. 
In the coordinate system V = ∂/∂v , the metric and the gauge field 
are v-independent and the general supersymmetric solution in the 
null family is given by [3]

ds2 = −2e+e− + eiei , A = −
√

3

2
Ãidxi , (2.3)

where i, j . . . = 1, 2, 3 and the orthonormal frame is given by

e+ = H−1du , e− = dv + F
2

du , ei = H(dxi + aidu) .

In three-dimensional vector notation, the supersymmetric solu-
tions are determined by the system

∇ × Ã = ∇H , ∂uÃ = 1

3
H−2∇ ×

(
H3a

)
,

∇2F = 2H2 Du W ii + 2H W (i j)W (i j) + 2

3
H W [i j]W [i j] , (2.4)

where Du ≡ ∂u − a · ∇ and W ij ≡ Du Hδi j − H∂ jai . The integrabil-
ity condition of (2.4) leads to ∇2 H = 0. The solution to the Killing 
spinor equation (2.2) is given by the constant spinor under the 
projection γ +ε = 0, viz, the solution preserves half of the super-
symmetries.

Let us focus here on the following class of supersymmetric so-
lutions

a = 0 , H = H(x) , F = − 4

(hu)2
U (x) . (2.5)

With these restrictions, the metric is invariant under the SO(1, 1)

boost action u → λu, v → v/λ [28]. Namely there exists an addi-
tional Killing vector ξ = u∂/∂u − v∂/∂v corresponding to the scal-
ing. By the following coordinate transformation (u, v) → (t, w):

u = 2

h
e−hw/2 , v = tehw/2 , (2.6)

where h is a constant, the scaling Killing vector is transformed into 
a coordinate vector, ξ = −(2/h)∂/∂ w . It therefore follows that the 
metric (2.3) is independent of w and reads

ds2 = H−1dw[2dt + (ht + U )dw] + H2dx2 , (2.7)

where H and U obey Laplace’s equations ∇2 H = ∇2U = 0 on R3. 
One can then reduce the system down to four dimensions by the 
Kaluza–Klein ansatz

ds2 = e−2φ/
√

3(dw + 2A(1))2 + eφ/
√

3 gμνdxμdxν , (2.8)

where

φ =
√

3

2
ln

(
H

ht + U

)
, A(1) = dt

2(ht + U )
, (2.9)

and the 4-dimensional metric ds2
4 = gμνdxμdxν reads

ds2
4 = −�−1

4 dt2 + �4dx2 , (2.10)

with �4 ≡ [(ht + U )H3]1/2. This recovers the solution obtained by 
the compactification of dynamically intersecting branes (with three 
equal charges) [19] and solves the four-dimensional field equations 
derived from the Lagrangian

L(0)
4 = R − 1

2
(∇φ)2

− e−√
3φ F (1)

μν F (1)μν − e−φ/
√

3 F (2)
μν F (2)μν , (2.11)

where F (1,2) = dA(1,2) and A(2) = −
√

3
2 Ãidxi descends from the 

five-dimensional gauge potential (2.3).
Working in spherical coordinates dx2 = dr2 + r2(dθ2 +

sin2 θdφ2), let us consider the case in which only the monopole 
sources are nonvanishing as H = 1 + Q /r and U = Q /r. Asymp-
totically for r → ∞, the metric (2.10) then tends to an expanding 
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