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We obtain the thermodynamic geometry of a (2 + 1) dimensional strongly coupled quantum field theory 
at a finite temperature in a holographic setup, through the gauge/gravity correspondence. The bulk dual 
gravitational theory is described by a (3 + 1) dimensional charged AdS black hole in the presence 
of a massive charged scalar field. The holographic free energy of the (2 + 1) dimensional strongly 
coupled boundary field theory is computed analytically through the bulk boundary correspondence. The 
thermodynamic metric and the corresponding scalar curvature are then obtained from the holographic 
free energy. The thermodynamic scalar curvature characterizes the superconducting phase transition of 
the boundary field theory.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The gauge theory/gravity correspondence has been one of the 
most significant advances in the study of the physics of fundamen-
tal forces. This holographically relates a weakly coupled (d + 1)

dimensional bulk classical theory of gravity coupled to matter 
fields in an Anti-de-Sitter (AdS) spacetime to a strongly coupled 
d-dimensional quantum field theory on its conformal boundary 
[1–4]. Apart from diverse other applications this holographic du-
ality may be utilized to study strongly coupled quantum field the-
ories describing condensed matter systems. In this context, it was 
first shown by Gubser [5] that for a charged AdS black hole mini-
mally coupled to a complex scalar field it allows the condensation 
of the scalar field near the black hole horizon resulting in scalar 
hair at a certain critical temperature. From the holographic dic-
tionary this corresponds to a scalar operator that is dual to the 
bulk charged scalar field, acquiring a non-zero vacuum expectation 
value in the strongly coupled boundary field theory. The forma-
tion of such a charged condensate describes a superconducting 
phase transition in the strongly coupled boundary quantum field 
theory that spontaneously breaks the global U (1) symmetry and 
is referred to as a holographic superconductor [6–9]. Subsequently 
there was a surge of interest in the investigation of the condensate 
formation, transport and spectral properties for such holographic 
superconductors in various dimensions both in the probe limit and 
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including the back reaction [10–15]. Furthermore in [16–20] the 
authors have studied the thermodynamic properties and the crit-
ical phenomena of such holographic superconductors and showed 
that the critical exponents indicate a mean field behavior corre-
sponding to a second order phase transition.

In a distinct context over the last decade there has been impor-
tant progress in associating an intrinsic Riemannian geometrical 
structure with equilibrium thermodynamic systems through the 
studies of Weinhold [21,22] and Ruppeiner [23]. Such a framework 
of thermodynamic geometry associates a Riemannian metric with 
an Euclidean signature in the equilibrium state space of any ther-
modynamic system which is based on the thermodynamic fluc-
tuations. In a Gaussian approximation the probability distribution 
of such fluctuations was related to the positive definite invariant 
line element defined by this geometry. It was shown that the ther-
modynamic Riemannian scalar curvature encodes the microscopic 
interactions of the underlying statistical system. Specifically in [23], 
it was shown through standard scaling and hyperscaling arguments 
that the thermodynamic scalar curvature is proportional to the 
correlation volume of the system and hence diverges at a critical 
point of second order phase transition. This geometrical framework 
was used to characterize phase transitions and critical phenom-
ena for diverse thermodynamic systems [23]. Application of this 
framework to study the thermodynamics and phase transition for 
AdS black holes have yielded interesting insights [24–35]. Naturally 
the direct connection between the thermodynamic scalar curvature 
and the microscopic correlation length makes this framework suit-
able to study the phase transitions in systems lacking a precise 
and complete microscopic statistical description like black holes or 
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strongly coupled condensed matter systems. For an alternative ge-
ometrical approach to study the thermodynamics of black holes 
see the recent articles in [36–39].

In this article we propose to investigate the phase transition 
and critical phenomena for strongly coupled holographic super-
conductors in a grand canonical ensemble using the framework 
of thermodynamic geometry. Quite obviously a direct computa-
tion of the thermodynamic geometry for such strongly coupled 
finite temperature field theories would be intractable. However the 
gauge/gravity correspondence provides a holographic approach to 
the problem through the weakly coupled dual bulk gravitational 
theory. To this end we analytically compute the holographic free 
energy for the strongly coupled boundary quantum field theory at 
a finite temperature from the dual bulk charged AdS black hole 
in presence of charged scalar fields. For this we utilize an ana-
lytic method to implement the bulk to boundary correspondence 
through a saddle point approximation and in the probe limit as de-
scribed in [10,13]. We emphasize here that our analytic approach 
is distinct from the conventional analytic and numerical approach 
for the computation of the holographic free energy [18,20].

The holographic free energy may then be used as the ther-
modynamic potential to compute the thermodynamic metric and 
the corresponding thermodynamic scalar curvature for the strongly 
coupled boundary field theory at a finite temperature through 
standard techniques of Riemannian geometry. The study of the 
thermodynamic scalar curvature as a function of the temperature 
then exhibits a divergence at the critical transition temperature for 
the superconducting phase transition in the boundary field theory 
for different values of the mass of the bulk charged scalar field. 
As mentioned earlier such a divergence indicates a critical point 
of second order thermal phase transition. The critical temperature 
for this divergence matches well with the critical temperature ob-
tained from the conventional analytical and numerical techniques 
based on the condensate formation. There has been no previously
such attempt to characterize the phase structure of such a strongly 
coupled field theory at a finite temperature using the framework of 
thermodynamic geometry in a holographic approach. We empha-
size here that our analytical approach using a geometrical frame-
work based on microscopic fluctuations to study the phase transi-
tion and critical phenomena is more elegant and accurate than the 
conventional approach based on the superconducting condensate 
formation. This is indicated by the slight difference in the critical 
temperatures arrived at through the two distinct techniques men-
tioned here.

This article is organized as follows, in Section 2 we briefly de-
scribe the gravitational dual of a holographic superconductor and 
describe the superconducting phase of the (2 + 1) dimensional 
boundary field theory. Furthermore in the same section we present 
the computation of the holographic free energy of the strongly 
coupled (2 + 1) dimensional boundary field theory. In Section 3
we obtain the thermodynamic metric using the holographic free 
energy and compute the corresponding thermodynamic scalar cur-
vature for the (2 +1) dimensional boundary field theory and study 
its behavior with respect to the temperature. In Section 4 we 
present a summary of our results and discuss future open prob-
lems.

2. The gravity dual of a holographic superconductor

The minimal model for obtaining a holographic superconductor 
requires a U (1) gauge field and a charged complex scalar field in 
an AdS black hole background [6]. The bulk action corresponding 
to the gravitational dual may be given as

S =
∫

d4x
√−g
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where, κ2 = 4πG4 is related to the gravitational constant in the 
bulk and L is the AdS radius which we set to unity for further 
analysis. Here, � is the complex scalar field which is charged un-
der the bulk Maxwell field Aμ . The constants q and m correspond 
respectively to the charge and the mass of the bulk scalar field � . 
Here, we work in a weak gravity (or probe) limit, q → ∞ in which 
gravity decouples from the Abelian–Higgs sector (the scalar and 
the gauge field). In this limit, we consider the background to be 
given by a planar Schwarzschild black hole in the AdS4 bulk with 
the metric

ds2 = 1

z2

(
− f (z)dt2 + dz2

f (z)
+ dx2 + dy2

)
, (2)

f (z) = 1 − z3

z3
h

, zh = M−1/3. (3)

Here, M stands for the mass of the black hole and the points 
z = zh , z → 0 respectively correspond to the horizon and boundary 
of asymptotically Anti-de Sitter space–time. The Hawking temper-
ature of the black hole is given as

Th = | f ′(zh)|
4π

= 3

4π zh
. (4)

Assuming the ansatz Aμ = (φ(z), 0, 0, 0) and � = ψ(z) for the 
bulk fields [6], the equations of motion for the gauge field and 
the charged complex scalar field in the background (2) may be 
expressed as follows1

ψ ′′ +
(

−2

z
+ f ′

f

)
ψ ′ +

(
φ2

f 2
− m2

z2 f

)
ψ = 0, (5)

φ′′ − 2ψ2

z2 f
φ = 0, (6)

where prime denotes derivative with respect to z. An exact solu-
tion to equations (5) and (6) is clearly ψ = 0 and φ = μ − ρ z, 
which corresponds to the normal phase of the strongly coupled 
(2 + 1) dimensional boundary field theory at finite temperature 
with ρ and μ as the charge density and the chemical potential 
respectively.

2.1. Superconducting phase

In this section, we study the superconducting phase of the 
(2 + 1) dimensional strongly coupled boundary field theory in the 
probe limit. It was observed in [5], that a bulk charged AdS black 
hole develops an instability which leads to the formation of scalar 
hair near the horizon at low temperatures. This phase is described 
by the bulk solution, ψ �= 0 of the equations of motion (5) and (6). 
In the boundary field theory, this corresponds to a superconduct-
ing phase transition with a charged scalar operator O dual to ψ
acquiring a non-zero vacuum expectation value at the critical tem-
perature.

From the equations of motion (5) and (6), we observe that for 
a nontrivial solution we need to determine the two independent 
functions (ψ(z), φ(z)). For this, suitable boundary conditions must 
be imposed at the conformal boundary z → 0 and at the black hole 

1 To be exact, we consider � = ψ(z)eiα and make a gauge transformation Aμ →
Aμ + ∇μα, which renders the equations of motion free from the phase α.
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