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The hadronic light-by-light contribution to the anomalous magnetic moment of the muon was recently 
analyzed in the framework of dispersion theory, providing a systematic formalism where all input 
quantities are expressed in terms of on-shell form factors and scattering amplitudes that are in principle 
accessible in experiment. We briefly review the main ideas behind this framework and discuss the 
various experimental ingredients needed for the evaluation of one- and two-pion intermediate states. In 
particular, we identify processes that in the absence of data for doubly-virtual pion–photon interactions 
can help constrain parameters in the dispersive reconstruction of the relevant input quantities, the pion 
transition form factor and the helicity partial waves for γ ∗γ ∗ → ππ .

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The limiting factor in the accuracy of the Standard-Model pre-
diction for the anomalous magnetic moment of the muon aμ =
(g − 2)μ/2 is control over hadronic uncertainties [1,2]. The lead-
ing hadronic contribution, hadronic vacuum polarization, is related 
to the total hadronic cross section in e+e− annihilation, so that 
the improvements necessary to compete with the projected accu-
racy of the FNAL and J-PARC experiments can be achieved with a 
dedicated e+e− program, see e.g. [3,4]. Owing to the complexity of 
the hadronic light-by-light (HLbL) tensor, a similar data-driven ap-
proach for the subleading1 HLbL scattering contribution has only 
recently been suggested, and only for the leading hadronic chan-
nels [8]. In contrast to previous approaches [9–21], this formalism 
aims at providing a direct link between data and the HLbL contri-
bution to aμ . An alternative strategy to reduce model-dependence 
in HLbL relies on lattice QCD, see [22] for a first calculation.

The dispersive framework in [8] includes both the dominant 
pseudoscalar-pole contributions as well as two-meson intermedi-
ate states, thus covering the most important channels. In view of 
the fact that a data-driven approach for the HLbL contribution is 

* Corresponding author.
1 At this order also two-loop diagrams with insertions of hadronic vacuum po-

larization appear [5]. Even higher-order hadronic contributions have been recently 
considered in [6,7].

substantially more involved than that for HVP, we present here an 
overview of this approach leaving aside all theoretical details, and 
emphasize which measurements can help constrain the required 
hadronic input. At present such an overview can only be obtained 
after studying several different theoretical papers. It is, however, 
essential that also experimentalists become fully aware that some 
measurements may have a substantial and model-independent im-
pact on a better determination of the HLbL contribution to aμ . This 
is the main aim of the present letter.

2. Theoretical framework

2.1. Dispersion relations

In dispersion theory the matrix element of interest is recon-
structed from information on its analytic structure: residues of 
poles, discontinuities along cuts, and subtraction constants (repre-
senting singularities at infinity). In contrast to HVP, the complexity 
of the HLbL tensor prohibits the summation of all possible inter-
mediate states into a single dispersion relation. Instead, one has to 
rely on an expansion in the mass of allowed intermediate states, 
justified by higher thresholds and phase-space suppression in the 
dispersive integrals. In this paper we concentrate on the lowest-
lying intermediate states, the π0 pole and ππ cuts, that illustrate 
the basic features of our dispersive approach and are expected to 
be most relevant numerically. We will comment on higher inter-
mediate states in Section 4.
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Fig. 1. Representative unitarity diagrams for the pion pole (left), the FsQED contri-
bution (middle), and ππ rescattering (right). The gray blobs refer to the pertinent 
pion form factors, those with vertical line to the non-pole γ ∗γ ∗ → ππ amplitude. 
The dashed lines indicate the cutting of pion propagators. For more details see [8].

Given that each contribution to the HLbL tensor is uniquely de-
fined by its analytic structure, it can be related unambiguously to a 
certain physical intermediate state. We decompose the HLbL tensor 
according to

Πμνλσ = Ππ0

μνλσ + Π
FsQED
μνλσ + Πππ

μνλσ + · · · , (1)

where Ππ0

μνλσ denotes the pion pole, Π
FsQED
μνλσ the amplitude in 

scalar QED with vertices dressed by the pion vector form factor 
F V
π (FsQED), Πππ

μνλσ includes the remaining ππ contribution, and 
the ellipsis higher intermediate states. Representative unitarity di-
agrams for each term are shown in Fig. 1.

The separation of the FsQED amplitude ensures that contribu-
tions with simultaneous cuts in two kinematic variables are cor-
rectly accounted for. In fact, ΠFsQED

μνλσ is completely fixed by the pion 
vector form factor, see [8] for details and explicit expressions. Since 
for this purpose F V

π is known to sufficient accuracy experimentally, 
Π

FsQED
μνλσ is completely determined and we will concentrate on re-

viewing the central results for Ππ0

μνλσ and Πππ
μνλσ in the following.

2.2. Pion pole

The residue of the pion pole is determined by the pion tran-
sition form factor Fπ0γ ∗γ ∗ (q2

1, q
2
2). The corresponding contribution 

to aμ follows from [17]

aπ0

μ = −e6
∫

d4q1

(2π)4

∫
d4q2

(2π)4

1

q2
1q2

2sZ1 Z2

×
{Fπ0γ ∗γ ∗(q2

1,q2
2)Fπ0γ ∗γ ∗(s,0)

s − M2
π0

T π0

1 (q1,q2; p)

+ Fπ0γ ∗γ ∗(s,q2
2)Fπ0γ ∗γ ∗(q2

1,0)

q2
1 − M2

π0

T π0

2 (q1,q2; p)

}
,

Z1 = (p + q1)
2 − m2, Z2 = (p − q2)

2 − m2,

s = (q1 + q2)
2, (2)

where m denotes the mass of the muon, p its momentum, e =√
4πα the electric charge, and the T π0

i (q1, q2; p) are known kine-
matic functions.

It should be mentioned that the relation (2) only represents the 
π0 pole, it does not, on its own, satisfy QCD short-distance con-
straints. As pointed out in [19], the pion pole as defined in (2)
tends faster to zero for large q2 than required by perturbative 
QCD due to the momentum dependence in the singly-virtual form 
factors. The correct high-energy behavior is only restored by the 
exchange of heavier pseudoscalar resonances, but the pion-pole 
contribution, by its strict dispersive definition, is unambiguously 
given as stated in (2).

Fig. 2. e+e− → e+e−π0 and e+e− → e+e−ππ in space-like kinematics.

2.3. ππ intermediate states

The contribution from ππ intermediate states can be expressed 
as [8]

aππ
μ = e6

∫
d4q1

(2π)4

∫
d4q2

(2π)4

∑
i I i(s,q2

1,q2
2)T ππ

i (q1,q2; p)

q2
1q2

2sZ1 Z2
, (3)

in a way similar to the pion pole (2). The T ππ
i (q1, q2; p) again de-

note known kinematic functions, while the information on the am-
plitude on the cut is hidden in the dispersive integrals Ii(s, q2

1, q
2
2). 

For instance, the first S-wave term reads

I1
(
s,q2

1,q2
2

) = 1

π
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4M2
π

ds′

s′ − s

[(
1

s′ − s
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(4)

with Källén function λ(x, y, z) = x2 + y2 + z2 −2(xy + xz + yz), nor-
malization of longitudinal polarization vectors ξi , and partial-wave 
helicity amplitudes h J

λ1λ2,λ3λ4
(s; q2

1, q
2
2; q2

3, q
2
4) for

γ ∗(q1, λ1)γ
∗(q2, λ2) → γ ∗(q3, λ3)γ

∗(q4, λ4) (5)

with angular momentum J . By means of partial-wave unitarity

Im h J
λ1λ2,λ3λ4

(
s;q2

1,q2
2;q2

3,q2
4

)

=
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16π
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)
, (6)

the imaginary part in (4) is related to the helicity partial waves 
h J ,λ1λ2 (s; q2

1, q
2
2) for γ ∗γ ∗ → ππ , which have to be determined 

from experiment.
One key feature in the derivation of (3) concerns the sub-

traction polynomial. Frequently, dispersion relations need to be 
subtracted to render the integrals convergent, and the ensuing 
subtraction constants are free parameters of the approach that 
need to be determined either from experiment or by further the-
oretical means, such as effective field theories or lattice QCD. 
For HLbL scattering, however, gauge invariance puts very strin-
gent constraints on the amplitude and the subtraction polynomial. 
Therefore, the situation is actually similar to HVP, where the com-
bination of analyticity, unitarity, and gauge invariance provides a 
parameter-free relation between the contribution to aμ and the 
experimental input, the hadronic e+e− cross section, as well.

3. Experimental input

By means of a Wick rotation the loop integrals in (2) and (3)
can be brought into such a form that only space-like momenta 
appear in the integral, so that in principle all required information 
can be extracted from the processes depicted in Fig. 2. However, 
this would require double-tag measurements for arbitrary negative 
virtualities, and, in the ππ case, sufficient angular information to 
perform a partial-wave analysis.



Download	English	Version:

https://daneshyari.com/en/article/1850601

Download	Persian	Version:

https://daneshyari.com/article/1850601

Daneshyari.com

https://daneshyari.com/en/article/1850601
https://daneshyari.com/article/1850601
https://daneshyari.com/

