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We consider the initial energy density in the transverse plane of a high energy nucleus–nucleus 
collision as a random field ρ(x), whose probability distribution P [ρ], the only ingredient of the present 
description, encodes all possible sources of fluctuations. We argue that it is a local Gaussian, with a 
short-range 2-point function, and that the fluctuations relevant for the calculation of the eccentricities 
that drive the anisotropic flow have small relative amplitudes. In fact, this 2-point function, together with 
the average density, contains all the information needed to calculate the eccentricities and their variances, 
and we derive general model independent expressions for these quantities. The short wavelength 
fluctuations are shown to play no role in these calculations, except for a renormalization of the short 
range part of the 2-point function. As an illustration, we compare to a commonly used model of 
independent sources, and recover the known results of this model.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The fluctuations of the initial energy density (to be denoted 
ρ(x) throughout this paper) in the transverse plane of a heavy 
ion collision play an essential role in the dynamics of these col-
lisions. They leave observable traces in particle distributions after 
the hydrodynamical evolution [1]. They are for instance respon-
sible for elliptic flow fluctuations [2,3] triangular flow [4–7] and 
higher harmonics [8,9], directed flow near midrapidity [9–12], and 
may also explain [13,14] observed transverse momentum fluctu-
ations [15–18]. Considerable experimental and theoretical efforts 
are presently devoted to pin down the details of these fluctuations 
[19–22] and their various correlations [5,23,24].

It is then a natural question to try and specify the nature of the 
information that one can extract from measurements of various 
features of anisotropic flows. The initial energy density fluctua-
tions are of several origins. The most prominent ones are usually 
attributed to the motion of individual nucleons in the nuclear 
wave-functions, and treated by Glauber Monte Carlo calculations 
[25–28]. In addition, there are sub-nucleonic fluctuations, that re-
flect the partonic structure of the colliding objects [29]. In most 
approaches, such sub-nucleonic fluctuations are added on top of 
the geometrical ones, using various “recipes” [30,31]. There is con-
siderable ambiguity in the whole procedure: sources, with vari-
ous locations [32], strengths [30], spatial extents, shapes, etc., are 
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added by hand to an already crude description of the nuclear 
wave-functions. It would certainly be desirable to use a descrip-
tion where all irrelevant details do not stand prominently.

We find it useful then to address the question from another an-
gle, with the goal of obtaining general, model independent, state-
ments about the fluctuations. To achieve this goal, we regard the 
energy density ρ(x) in the transverse plane as a random field, and 
try to characterize the underlying probability distribution, P [ρ] for 
finding a given ρ(x) in a particular event. This probability distri-
bution is the only ingredient of the description, and it encodes all 
sources of fluctuations, irrespective of their natures. We conjec-
ture that this distribution is a local Gaussian with a short-range 
2-point function. That is, we argue that the fluctuations of the 
density at different points in the transverse plane are essentially 
uncorrelated. Corrections are to be expected in regions where the 
nuclear density is low, and these corrections will be qualitatively 
discussed. Furthermore, we also argue that short wavelength fluc-
tuations are irrelevant for the calculations of the eccentricities that 
drive the anisotropic flows, except for a small renormalization of 
the short range 2-point function.

We start, in the next section, by deriving general expressions 
for the eccentricities and their variances, in terms of the average 
density and the 2-point function of the probability distribution. 
The calculation exploits the fact that the relevant fluctuations have 
a small amplitude, relative to the average density. We then provide 
a simple ansatz for the 2-point function, which is dominated by a 
short range contribution. We compare results obtained with this 
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ansatz with those obtained with a model of independent sources, 
and we recover known analytic formulas expressing the eccentric-
ities as products of geometrical factors by an overall measure of 
the strength of the fluctuations. We then discuss why the Gaussian 
distribution provides a simple, and presumably realistic, form for 
the probability distribution.

2. Expressions of fluctuation observables in terms of the 
two-point function

We characterize event classes by the impact parameter b. Even 
though not directly accessible experimentally, the impact param-
eter is well defined in a high energy collision. For simplicity, in 
most of this paper, we restrict ourselves to the case of central col-
lisions, i.e. b = 0, except for a remark on the general case at the 
end of this section. We write the energy density in a given event 
class as ρ(x) = 〈ρ(x)〉 + δρ(x), where 〈ρ(x)〉 is the average energy 
density and δρ(x) is referred to as the fluctuation. The probability 
that a given ρ(x) occurs in the event class considered is denoted 
by P [ρ].

The observables that we wish to calculate characterize the 
shape of the fluctuating density ρ(x), in terms of its moments, 
commonly referred to as eccentricities [10]. These are defined by

en ≡
∫
z

znρ(z). (1)

Note that en is a vector in the transverse plane (i.e., the plane 
transverse to the collision axis). In the right hand side of Eq. (1) we 
use the complex notation to represent vectors in the plane. That 
is, we allow for a slight abuse of notation and denote indifferently 
a vector r by its components x, y, or by the complex number z =
x + iy. Thus the density, denoted indifferently by ρ(r) or ρ(z), is 
a real function of x and y. Similarly, we use the short hand 

∫
z =∫

dxdy for the integration over the transverse plane.
The zeroth and first moments are special and require specific 

definitions:

e0 =
∫
z

|z|2ρ(z), e1 =
∫
z

z2 z̄ρ(z), (2)

with z̄ denoting the complex conjugate of z. The zeroth moment e0
is the mean squared radius of the density, while e1 is a measure of 
the dipole moment of the distribution [10]. The particular weight 
z2 z̄ in the integral defining e1, instead of the more natural one, 
z, is due to the fact that in a centered coordinate system, to be 
defined shortly, the dipole moment vanishes (Eq. (3) below).

By definition, we call “centered” a coordinate system where∫
z

zρ(z) = 0. (3)

It is only in such a system that the definitions (1) and (2) above 
are valid. In a fixed coordinate system, however, the fluctuating 
density would be centered around a random point z0, distinct form 
the origin,

z0 =
∫

z zρ(z)∫
z ρ(z)

, (4)

and the definitions above need to be modified accordingly:

e0 =
∫
z

|z − z0|2ρ(z), e1 =
∫
z

(z − z0)
2(z̄ − z̄0)ρ(z),

en =
∫
z

(z − z0)
nρ(z). (5)

Because z0 is a functional of ρ , Eq. (4), the averages of the ec-
centricities are in general difficult to evaluate. However, simple 
expressions can be obtained in the regime of small fluctuations, 
which is the case of practical interest. Indeed the calculation of the 
eccentricities en , with n small, involves only the lowest (small k) 
Fourier coefficients δρk of the fluctuation δρ(r) = ∫

k eik·r δρk [10]. 
This automatically eliminates the rare fluctuations where δρ(r) can 
be locally large (spikes). We return to this issue in the next section.

We then assume that, for the long wavelength fluctuations, 
δρ(z) � 〈ρ(z)〉, and choose the coordinate system such that 〈ρ(z)〉
is centered; in particular, at vanishing impact parameter, 〈ρ(z)〉
has azimuthal symmetry. The center of mass of ρ(z) is still given 
by Eq. (4) with ρ(z) in the numerator replaced by δρ(z): it fol-
lows therefore that z0 differs from the origin of the coordinate 
system by a small amount, of order δρ/〈ρ〉. A simple calculation 
then yields, to linear order in the fluctuation,

e0 =
∫
z

|z|2[〈ρ(z)
〉 + δρ(z)

]
, e1 =

∫
z

[
z2 z̄ − 2

〈
r2〉z]δρ(z),

en =
∫
z

znδρ(z), (6)

where we have set

〈
r2〉 ≡

∫
z |z|2〈ρ(z)〉∫

z〈ρ(z)〉 , (7)

and we have used symmetries of 〈ρ(z)〉 to eliminate some terms.
The anisotropic flow coefficients vn that are experimentally 

measured, are not directly related to the en ’s, but are rather pro-
portional to the dimensionless ratios [2,10] defined, in a centered 
system, by

εn ≡
∫

z znρ(z)∫
z |z|nρ(z)

, ε1 =
∫

z z2 z̄ρ(z)∫
z |z|3ρ(z)

. (8)

It has been shown indeed that the relation vn ∝ εn , is well satis-
fied in ideal hydrodynamics [33–35], and even better so in viscous 
hydrodynamics [36]. Note that with the sign convention chosen in 
Eq. (8) (which differs from that in Ref. [10]) the response coeffi-
cients vn/εn are negative. Similarly, we define ε0 by dividing e0 by 
the total energy:

ε0 =
∫

z |z|2ρ(z)∫
z ρ(z)

. (9)

This (dimensionful) quantity represents the mean square radius of 
the distribution in an individual event. It is distinct from (7) which 
involves the average density.

Expanding the scaled moments (8), (9) in powers of the fluctu-
ation, we obtain, to leading order,

ε0 = 〈
r2〉 +

∫
z δρ(z)(|z|2 − 〈r2〉)∫

z〈ρ(z)〉 , (10)

and

εn =
∫

z zn δρ(z)∫
z |z|n〈ρ(z)〉 , ε1 =

∫
z[z2 z̄ − 2z〈r2〉] δρ(z)∫

z |z|3〈ρ(z)〉 . (11)

Note that, at this order, only ε0 contains a contribution unrelated 
to fluctuations, all eccentricities εn with n ≥ 1, being entirely due 
to fluctuations for central collisions (the numerators of Eq. (11) are 
proportional to δρ , the contributions of 〈ρ〉 being zero for symme-
try reasons).
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