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The chiral nucleon-meson model, previously applied to systems with equal number of neutrons and 
protons, is extended to asymmetric nuclear matter. Fluctuations are included in the framework of the 
functional renormalization group. The equation of state for pure neutron matter is studied and compared 
to recent advanced many-body calculations. The chiral condensate in neutron matter is computed as 
a function of baryon density. It is found that, once fluctuations are incorporated, the chiral restoration 
transition for pure neutron matter is shifted to high densities, much beyond three times the density of 
normal nuclear matter.
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1. Introduction

In recent years our understanding of neutron matter has 
been sharpened significantly. Empirical data as well as theoreti-
cal progress set increasingly strong constraints for the equation of 
state (EoS) at high baryon densities. The observation of two-solar 
mass neutron stars [1,2] implies that the EoS must be sufficiently 
stiff in order to support such dense systems against gravitational 
collapse.

At the same time different realistic calculations of neutron mat-
ter based on purely hadronic degrees of freedom are seen to be 
converging to a consistent picture of the energy per particle as a 
function of neutron density. Approaches such as chiral Fermi liquid 
theory [3], chiral effective field theory (ChEFT, [4–6]), or quantum 
Monte Carlo (QMC) calculations [7,8] all agree with each other 
within their ranges of applicability. Whereas compact stars with 
a considerable “exotic” composition, such as a substantial quark 
core, seem to provide not enough pressure to support a two-solar 
mass neutron star unless additional strongly repulsive forces are 
invoked, conventional hadronic matter is consistent with all avail-
able mass-radius constraints [9].

In recent publications [10,11], a successful chiral nucleon-
meson model for symmetric nuclear matter, previously introduced 
in [12], was studied beyond mean-field approximation. Fluctua-
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tions were treated within the framework of the functional renor-
malization group (FRG). The importance of a proper handling of 
fluctuations around the nuclear liquid-gas phase transition was 
demonstrated. Moreover, no sign of chiral restoration was found 
for temperatures below about 100 MeV and densities up to about 
three times nuclear saturation density, n0 = 0.16 fm−3.

In the present letter we extend this model to asymmetric nu-
clear matter. The equation of state for pure neutron matter is com-
puted and compared with state-of-the-art many-body calculations. 
As in symmetric nuclear matter, fluctuations tend to stabilize the 
hadronic phase characterized by spontaneously broken chiral sym-
metry and shift the chiral restoration transition to densities much 
larger than those anticipated in mean-field approximation. This re-
sult is of relevance for chiral approaches to strongly interacting, 
highly compressed baryonic matter, indicating that nucleon and 
meson (rather than quark) degrees of freedom are still active at 
densities several times that of normal nuclear matter.

2. Chiral nucleon-meson model and fluctuations

The chiral nucleon-meson model is designed to describe nu-
clear matter and its thermodynamics around the liquid-gas phase 
transition. The relevant degrees of freedom are protons and neu-
trons forming an isospin doublet nucleon field ψ = (ψp, ψn)T . 
The nucleons are coupled to boson fields: a chiral four-component 
field (σ , π) transforming under the chiral group SO(4) ∼= SU(2)L ×
SU(2)R , an isoscalar–vector field ωμ and an isovector–vector field 
ρμ . Note that these ω and ρ fields are not to be identified 
with the known omega and rho mesons. They are introduced 
here to act as background mean fields representing the effects of 
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short-distance interactions between nucleons, averaged over the 
baryonic medium. The ρ field appears as an additional degree of 
freedom in isospin-asymmetric matter, as compared to symmetric 
nuclear matter where its expectation value vanishes due to isospin 
symmetry. The Lagrangian of the extended nucleon-meson model 
reads

L = ψ̄ iγμ∂μψ + 1

2
∂μσ∂μσ + 1

2
∂μπ · ∂μπ

− ψ̄
[

g(σ + iγ5τ · π) + γμ

(
gωωμ + gρτ · ρμ

)]
ψ

− 1

4
F (ω)
μν F (ω)μν − 1

4
F (ρ)

μν · F (ρ)μν

+ 1

2
m2

ωωμωμ + 1

2
m2

ρρμ · ρμ − U(σ ,π). (1)

Here τ are the isospin Pauli-matrices, and F (ω)
μν = ∂μων − ∂νωμ , 

F (ρ)
μν = ∂μρν − ∂νρμ − gρ ρμ × ρν (only the three-component in 

isospin space of the time component of ρμ will be involved in the 
further discussions, so the non-abelian part of F (ρ)

μν is actually not 
relevant). The potential U(σ , π) has a piece, U0(χ), that depends 
only on the chirally invariant square χ = 1

2 (σ 2 + π2), as well as 
an explicit symmetry breaking term:

U(σ ,π ) = U0(χ) − m2
π fπ (σ − fπ ), (2)

with the pion mass mπ = 135 MeV and the pion decay constant 
fπ = 93 MeV.

As demonstrated in [11], fluctuations beyond the mean-field 
approximation can be included using the functional renormaliza-
tion group approach. A proper treatment of fluctuations turned out 
to be crucial in order to make contact with results from in-medium 
chiral perturbation theory calculations of symmetric nuclear mat-
ter [5], emphasizing in particular the role of two-pion exchange 
dynamics and three-body forces in the nuclear medium. One there-
fore expects that a full treatment of fluctuations with FRG methods 
is also important for asymmetric nuclear matter, given the pro-
nounced isospin dependence induced by the fluctuating pion field 
through multiple pion exchange processes.

The effective action Γk based on the Lagrangian (1) depends on 
a renormalization scale k and interpolates between a microscopic 
action, Γk=Λ , defined at an ultraviolet renormalization scale Λ, and 
the full quantum effective action, Γeff = Γk=0. As the scale k is 
lowered, the renormalization group flow of Γk is determined by 
Wetterich’s equation [13],

k
∂Γk

∂k
= = 1

2
Tr

k ∂ Rk
∂k

Γ
(2)

k + Rk

, (3)

where Rk = (k2 − p2)θ(k2 − p2) is a regulator function and Γ (2)

k =
δ2Γk
δφ2 is the full inverse propagator. In leading order of the deriva-

tive expansion, Γk = ∫
d4x ( 1

2 ∂μφ†∂μφ + Uk), where φ symbolizes 
all appearing fields and Uk is the scale-dependent effective poten-
tial. The flow equation reduces now to an equation for Uk . In the 
spirit of Ref. [14] the flow of the difference

Ūk(T ,μn,μp) = Uk(T ,μn,μp) − Uk(0,μc,μc) (4)

is computed, with the effective potential Uk(T , μn, μp) taken at 
given values of temperature T and of neutron/proton chemical po-
tentials, μn and μp , subtracting Uk(0, μc, μc) at the liquid-gas 
transition for symmetric matter at zero temperature. The critical 
chemical potential μc = 923 MeV at vanishing temperature is the 
difference between nucleon mass and binding energy. The subtrac-
tion at μ = μc is motivated by the fact that at this point, nuclear 

physics information can be optimally used to constrain the ef-
fective potential. The regime 0 ≤ μ < μc corresponds to a single 
physical state, the vacuum, with constants mπ and fπ unchanged 
by the FRG evolution [11]. A more detailed discussion will be pre-
sented in a forthcoming publication [15].

The k-dependence of Ūk is given by the simplified flow equa-
tion

V

T

k∂ Ūk

∂k
(T ,μn,μp)

=
∣∣∣∣

T ,μn,μp

−
∣∣∣∣ T =0
μn=μp=μc

. (5)

The loops symbolize the full propagators of both fermions (nucle-
ons) and bosons (pions and sigma) with inclusion of the regulator. 
The heavy vector bosons ωμ and ρμ are treated as non-fluctuating 
mean fields. Their Compton wavelengths are supposed to be small 
compared to the distance scales characteristic of the Fermi mo-
menta under consideration. Rotational invariance implies that the 
spatial components of the vector mean fields vanish. The only 
components that can acquire non-zero expectation values are ω0
and ρ3

0 . Their effect is a shift of neutron and proton chemical po-
tentials according to:

μeff
n,p = μn,p − gωω0 ± gρρ3

0 . (6)

The scalar boson σ and the pions π are light compared to the 
energy scales we are interested in and so they are allowed to fluc-
tuate. Similarly, the nucleons are kept in the flow equations, thus 
incorporating soft nucleon-hole excitations around the Fermi sur-
face. Under these conditions, the flow equations for the present 
model become:

∂ Ūk(T ,μn,μp)

∂k
= fk(T ,μn,μp) − fk(0,μc,μc), (7)

with

fk(T ,μn,μp) = k4

12π2

{
3 · 1 + 2nB(Eπ )

Eπ
+ 1 + 2nB(Eσ )

Eσ

− 4
∑

i=n,p

1 − ∑
r=±1 nF(EN − rμeff

i (k))

EN

}
. (8)

Here,

E2
π = k2 + U ′

k(χ), E2
σ = k2 + U ′

k(χ) + 2χU ′′
k (χ),

U ′
k(χ) = ∂Uk(χ)

∂χ
, E2

N = k2 + 2g2χ,

μeff
n,p(k) = μn,p − gωω0(k) ± gρρ3

0 (k),

nB(E) = 1

eE/T − 1
, and nF(E) = 1

eE/T + 1
. (9)

The k-dependent mean fields ω0(k) and ρ3
0 (k) are defined at the 

minima of Uk for each scale k. These fields are thus eliminated as 
external parameters, simplifying the numerical effort. Their values 
at k are given by the solutions of the following equations which 
supplement the FRG equation (7):

gωω0(k) =
∑

r=±1

g2
ω

3π2m2
ω

Λ∫
k

dp
p4

EN

× ∂

∂μ

[
nF

(
EN − rμeff

p (k)
) + nF

(
EN − rμeff

n (k)
)]

,
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