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Flavour symmetry breaking in the kaon parton distribution amplitude
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We compute the kaon’s valence-quark (twist-two parton) distribution amplitude (PDA) by projecting its 
Poincaré-covariant Bethe–Salpeter wave-function onto the light-front. At a scale ζ = 2 GeV, the PDA is 
a broad, concave and asymmetric function, whose peak is shifted 12–16% away from its position in QCD’s 
conformal limit. These features are a clear expression of SU(3)-flavour-symmetry breaking. They show 
that the heavier quark in the kaon carries more of the bound-state’s momentum than the lighter quark 
and also that emergent phenomena in QCD modulate the magnitude of flavour-symmetry breaking: it is 
markedly smaller than one might expect based on the difference between light-quark current masses. 
Our results add to a body of evidence which indicates that at any energy scale accessible with existing 
or foreseeable facilities, a reliable guide to the interpretation of experiment requires the use of such 
nonperturbatively broadened PDAs in leading-order, leading-twist formulae for hard exclusive processes 
instead of the asymptotic PDA associated with QCD’s conformal limit. We illustrate this via the ratio 
of kaon and pion electromagnetic form factors: using our nonperturbative PDAs in the appropriate 
formulae, F K /Fπ = 1.23 at spacelike-Q 2 = 17 GeV2, which compares satisfactorily with the value of 
0.92(5) inferred in e+e− annihilation at s = 17 GeV2.

© 2014 Argonne National Laboratory and the authors. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Kaons are strong-interaction bound-states defined by their 
valence-quark content: a ū- or d̄-quark combined with the s-quark, 
or the opposite antiparticle-particle combination. The current-mass 
of the u/d-valence-quark is truly light but that of the s-quark has 
a value commensurate with ΛQCD, QCD’s dynamically-generated 
mass-scale. As we shall describe, this marked imbalance between 
current-masses provides at least two compelling reasons for study-
ing kaons. However, given that the s-quark is neither light nor 
heavy, elucidating the impact of the imbalance is challenging be-
cause it requires the use of nonperturbative techniques within 
QCD.

The first thing one would like to explore originates in the ob-
servation that with the introduction of the quark model as a classi-
fication scheme for the hadron spectrum [1,2] it became common 
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to assume, in the absence of reliable dynamical information to the 
contrary, that hadron wave functions and interaction currents ex-
hibit SU(2) ⊗ SU(3) spin-flavour symmetry. That assumption has 
implications for numerous observables, including the hadron spec-
trum itself and a host of other static and dynamical properties. 
Moreover, in an asymptotically free gauge field theory with Nc

colours, this symmetry is exact on 1/Nc � 0 [3]. Kaons therefore 
provide the simplest system in which the accuracy of these as-
sumptions and predictions can be tested.

The second aspect convolves the first challenge with the fact 
that, as strong interaction bound states whose decay is mediated 
only by the weak interaction, so that they have a relatively long 
lifetime, kaons have been instrumental in establishing the founda-
tion and properties of the Standard Model; notably, the physics 
of CP violation. In this connection the nonleptonic decays of B
mesons are crucial because, e.g., the transitions B± → (π K )± and 
B± → π±π0 provide access to the imaginary part of the CKM ma-
trix element V ub: γ = Arg(V ∗

ub) [4]. Factorisation theorems have 
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been derived and are applicable to such decays [5]. However, 
the formulae involve a certain class of so-called “non-factorisable” 
corrections because the parton distribution amplitudes (PDAs) of 
strange mesons are not symmetric with respect to quark and an-
tiquark momenta. Therefore, any derived estimate of γ is only as 
accurate as the evaluation of both the difference between K and π
PDAs and also their respective differences from the asymptotic dis-
tribution, ϕasy(u) = 6u(1 − u). Amplitudes of twist-two and -three 
are involved. With this motivation, we focus on the twist-two am-
plitudes herein.

Historically, the difficulty with placing constraints on this sort 
of nonfactorisable contribution is that methods such as lattice 
gauge theory, QCD sum rules and large-Nc provide little informa-
tion about the QCD dynamics relevant to hadronic B-decays. We 
therefore employ QCD’s Dyson–Schwinger equations, whose value 
in the computation of valence-quark distribution amplitudes has 
recently been established [6–10].

One of the key features to emerge from Refs. [6–10] is the cru-
cial role played by dynamical chiral symmetry breaking (DCSB) in 
shaping PDAs. DCSB is a remarkable emergent feature of the Stan-
dard Model. It plays a critical role in forming the bulk of the visible 
matter in the Universe [11] and is expressed in numerous aspects 
of the spectrum and interactions of hadrons; e.g., the large splitting 
between parity partners [12–14] and the existence and location of 
a zero in some hadron elastic and transition form factors [15,16]. 
The impact of DCSB is expressed with particular force in proper-
ties of light pseudoscalar mesons. Indeed, their very existence as 
the lightest hadrons is grounded in DCSB.

2. Computing the kaon twist-two PDA

The kaon’s valence-quark distribution amplitude may be ob-
tained via

f K ϕK (u) = Nc tr Z2

Λ∫
dq

δ(n · qη − un · P )γ5γ · nχ P
K (qη,qη̄), (1)

where: Nc = 3; f K is the kaon’s leptonic decay constant; the trace 
is over spinor indices; 

∫ Λ

dq is a Poincaré-invariant regularisation
of the four-dimensional integral, with Λ the ultraviolet regulari-
sation mass-scale; Z2(ζ, Λ), with ζ the renormalisation scale, is 
the quark wave-function renormalisation constant computed using 
a mass-independent renormalisation scheme [17]; n is a light-like 
four-vector, n2 = 0; P is the kaon’s four-momentum, P 2 = −m2

K
and n · P = −mK , with mK being the kaon’s mass; and (qηη̄ =
[qη + qη̄]/2)

χ P
K (qη,qη̄) = Ss(qη)ΓK (qηη̄; P )Su(qη̄), (2)

is the kaon’s Poincaré-covariant Bethe–Salpeter wave-function, 
with ΓK the Bethe–Salpeter amplitude, Ss,u the dressed s- and 
u-quark propagators, which take the form

S f =s,u(q) = −iγ · pσ
f

V

(
q2) + σ

f
S

(
q2) (3a)

= Z f
(
q2)/[iγ · p + M f

(
p2)], (3b)

and qη = q + ηP , qη̄ = q − (1 − η)P , η ∈ [0, 1]. Owing to Poincaré 
covariance, no observable can legitimately depend on η; i.e., the 
definition of the relative momentum.

With χ P
K in hand, it is straightforward to generalise the proce-

dure explained and employed in Ref. [6], and thereby obtain ϕK (u)

from Eq. (1). One first computes the moments

〈
um

�

〉 =
1∫

0

du (2u − 1)mϕK (u), (4)

which, using Eq. (1), can be obtained via

f K (n · P )m+1〈um
�

〉

= Nc tr Z2

Λ∫
dq

(2n · qη − n · P )mγ5γ · nχ P
π (qη,qη̄). (5)

Notably, beginning with an accurate form of χ P
K , arbitrarily many 

moments can be computed so that ϕK (u) can reliably be recon-
structed using the method we now describe.

Since the kaon is composed from valence-quarks with unequal 
current-masses, then ϕK (u) �= ϕK (1 − u) and all moments pro-
duced by Eq. (5) are nonzero. (The asymmetry disappears with 
the difference between current-quark masses: with mass degen-
eracy, the odd-m moments vanish, as occurs, e.g., for the π -, ρ-
and φ-mesons [6,18].) It follows that one may write

ϕK (u) = ϕE
K (u) + ϕO

K (u), (6a)

ϕE,O
K (u) = (1/2)

[
ϕK (u) ± ϕK (1 − u)

]
. (6b)

In this form, the nonzero moments of ϕE
K (u) reproduce all the 

m-even moments of ϕK and the nonzero moments of ϕO
K (u) are 

the m-odd moments of ϕK .
Consider now that Gegenbauer polynomials of order α,

{Cα
n (2u − 1) | n = 0, . . . , ∞}, are a complete orthonormal set on 

u ∈ [0, 1] with respect to the measure [u(1 − u)]α− , α− = α − 1/2. 
They therefore enable reconstruction of any function defined on 
u ∈ [0, 1] that vanishes at the endpoints; and hence, with complete 
generality and to a level of accuracy defined by the summation up-
per bounds,

ϕE,O
K (u) ≈ mϕE,O

K (u), (7)

where

mϕE
K (u) = Nᾱ

[
u(1 − u)

]ᾱ−
j̄max∑

j=0,2,4,...

aᾱ
j C ᾱ

j (2u − 1), (8a)

mϕO
K (u) = Nα̂

[
u(1 − u)

]α̂−
ĵmax+1∑

j=1,3,...

aα̂
j C α̂

j (2u − 1), (8b)

Nα = Γ (2α + 1)/[Γ (α + 1/2)]2 and aᾱ
0 = 1. In general, ᾱ �= α̂ be-

cause ϕE
K (u) and ϕO

K (u) are orthogonal components of ϕK (u).
At this point, from a given set of 2mmax moments computed via 

Eq. (5), the even and odd component-PDAs are determined inde-
pendently by separately minimising

εE
m =

∑
l=2,4,...,2mmax

∣∣〈ul
�

〉E
m/

〈
ul

�

〉 − 1
∣∣, (9a)

εO
m =

∑
l=1,3,...,2mmax−1

∣∣〈ul
�

〉O
m/

〈
ul

�

〉 − 1
∣∣, (9b)

over the sets {ᾱ, a2, a4, . . . , a jmax}, {α̂, a1, a3, . . . , a jmax+1}, where

〈
ul

�

〉E,O
m =

1∫
0

du (2u − 1)l
mϕE,O

K (u). (10)

This procedure acknowledges that at all empirically accessible 
scales the pointwise profile of PDAs is determined by nonperturba-
tive dynamics [6–10,19]; and hence they should be reconstructed 
from moments by using Gegenbauer polynomials of order α, with 
the order α determined by the moments themselves, not fixed 
beforehand. In the case of π -, ρ- and φ-mesons, this procedure 
converges rapidly: jmax = 2 is sufficient [6,18].
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