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In this work, a formalism based on symmetry which allows one to express asymmetries of all the 
particles in terms of conserved charges is developed. The manifestation of symmetry allows one to easily 
determine the viability of a baryogenesis scenario and also to identify the different roles played by the 
symmetry. This formalism is then applied to the standard model and its supersymmetric extension, which 
constitute two important foundations for constructing models of baryogenesis.
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1. Introduction

The evidences that we live in a matter-dominated Universe 
are very well-established [1]. While the amount of antimatter is 
negligible today, the amount of matter (i.e. baryon) of the Uni-
verse has been determined with great precision by two indepen-
dent methods. From the measurement of deuterium abundance 
originated from Big Bang Nucleosynthesis (BBN) when the Uni-
verse was about a second old (with temperature TBBN ∼ MeV), 
Ref. [2] quotes the baryon density normalized to entropic den-
sity as 1011Y BBN

B = 8.57 ± 0.18. From the measurement of tem-
perature anisotropy in the cosmic microwave background radiation 
imprinted by acoustic oscillation of photon–baryon plasma when 
the Universe was about 380 000 years old (TCMB ∼ 0.3 eV), Planck 
satellite gives 1011Y CMB

B = 8.66 ± 0.06 [3]. The impressive agree-
ment between the two measurements is a striking confirmation of 
the standard cosmological model.

In order to account for the cosmic baryon asymmetry, baryo-
genesis must be at work before the onset of BBN. Although the 
Standard Model (SM) of particle physics (and cosmology) contains 
all the three ingredients for baryogenesis: baryon number viola-
tion, C and CP violation, and the out-of-equilibrium condition [4], 
it eventually fails and new physics is called for [5]. Clearly these 
ingredients are necessary but not sufficient. Moreover, the early 
Universe is filled with particles of different types that interact with 
each other at various rates, rendering it a daunting task to analyze 
them. In this work, I would like to advocate the use of symmetry
as an organizing principle to analyze such a system. In particular, 
I will show that by identifying the symmetries of a system, one 
can relate the asymmetries of all the particles to the correspond-
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ing conserved charges without having to take into account details 
of how those particles interact.1 This should not come as a surprise 
since symmetry dictates physics: when we specify a symmetry and 
how particles transform under it, the interactions are automatically 
fixed. I will first review the formalism in Section 2. Then the roles 
of U (1) symmetries are clarified in Section 3. In Sections 4 and 5
respectively, I will apply this formalism to the SM and its super-
symmetric extension as they form important bases for constructing 
models of baryogenesis. Finally I conclude in Section 6.

2. Formalism

Here I will review the formalism that we will use in this work.2

For a system with s number of symmetries labeled U (1)x and con-
sisting of r ≥ s distinct types of complex particles labeled i (i.e. 
not self-conjugate like real scalar or Majorana fermion) with corre-
sponding chemical potentials μi and charges qx

i under U (1)x , the 
most general solution is given by

μi =
∑

x

Cxqx
i , (1)

where Cx is some real constant corresponding to U (1)x . It is appar-
ent that Eq. (1) is the solution for chemical equilibrium conditions 
for any possible in-equilibrium interactions since by definition, the 

1 It should be stressed immediately that the symmetries do not have to be exact. 
If a symmetry is approximate, the corresponding charge will be quasi-conserved 
with its evolution described by nonequilibrium formalism like Boltzmann equation. 
In other words, the description of the system boils down to identifying only the 
interactions related to approximate symmetries.

2 The formalism was first introduced by Ref. [6] to prove that the generation of 
hypercharge asymmetry in a preserved sector implies nonzero baryon asymmetry. 
See also the relevant discussion in Chapter 3.3 of Ref. [7].
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interactions necessarily preserve the symmetry. Note that symme-
try discussed in this work always refers to U (1) which character-
izes the charge asymmetry between particles and antiparticles. The 
U (1)x can be exact (like gauge symmetry) or approximate (due to 
small couplings, and/or suppression by mass scale and/or temper-
ature effects). The diagonal generators of a nonabelian group do 
not contribute as long as the group is not broken [6]. For instance 
one does not need to consider conservation of third component of 
weak isospin T3 before electroweak (EW) phase transition.

Now for each U (1)x , according to Noether’s theorem there is a 
conserved current and the corresponding conserved charge density 
can be constructed as

n�x =
∑

i

qx
i n�i, (2)

where n�i is the number density asymmetry for particle i. To 
proceed we need two further assumptions. Firstly, particle i is as-
sumed to participate in fast elastic scatterings such that its phase 
space distribution is either Fermi–Dirac [exp(Ei − μi)/T + 1]−1 or 
Bose–Einstein [exp(Ei −μi)/T − 1]−1 for fermion or boson respec-
tively. Secondly, there are fast inelastic scatterings for particle i and 
its antiparticle ī to gauge bosons (which have zero chemical poten-
tial) such that μī = −μi . These two assumptions are justified for 
instance when the particles have gauge interactions. Now Eq. (2)
can be related to its chemical potential for μi � T as follows3

n�i = ni − nī = T 2

6
giζiμi . (3)

In the above gi specifies the number of gauge degrees of freedom 
and

ζi ≡ 6

π2

∞∫
zi

dx x
√

x2 − z2
i

ex

(ex ± 1)2
, (4)

with zi ≡ mi/T . In the relativistic limit (T � mi), we have ζi = 1(2)

for i a fermion (boson) while in the nonrelativistic limit (T � mi), 
we obtain ζi = 6

π2 z2
i K2(zi) with K2(x) the modified Bessel func-

tion of type two of order two. Using Eqs. (1) and (3), Eq. (2) can 
be written as

n�x = T 2

6

∑
y

J xyC y, (5)

where we have defined the symmetric matrix J as follows

J xy ≡
∑

i

giζiq
x
i qy

i . (6)

We can invert Eq. (5) to solve for C y in terms of n�x and substi-
tuting it into Eq. (1) and then making use of Eq. (3), we obtain4

n�i = giζi

∑
y,x

qy
i

(
J−1

)
yx

n�x. (7)

3 The expansion in μi/T � 1 is justified as long as the number asymmetry den-
sity is much smaller than its equilibrium number density. For instance with n�i

the order of the observed baryon asymmetry, the expansion holds when the corre-
sponding particle mass over temperature mi/T � 20.

4 As long as r ≥ s and there are no redundant symmetries, in the sense that 
all the symmetries are linearly independent and there is no rotation in the 
s-dimensional symmetry space that can make all the r distinct particles uncharged 
under some U (1), J always has an inverse.

Eventually one would like to relate this to baryon asymmetry i.e. 
the baryon charge density. By substituting Eq. (7) into Eq. (2) for 
baryon charge density, we have

n�B =
∑
y,x

JBy

(
J−1

)
yx

n�x. (8)

Eqs. (7) and (8) make the symmetries of the system manifest: the 
solutions are expressed in term of conserved charges n�x , one for 
each U (1)x symmetry. In fact {n�x} forms the appropriate basis to 
describe the system. While qx

i comprises the charges of particle 
i under U (1)x , J matrix embodies full information of the system 
(all possible interactions consistent with the symmetry are implic-
itly taken into account). Notice that calculating J is particularly 
simple and circumventing the traditional approach of having to 
count the number of chemical potentials and determine the chem-
ical equilibrium conditions. It is now apparent that baryogenesis 
fails (n�B = 0) if: (I) the system does not possess any symmetry in 
which case Cx = 0 for all x in Eq. (1) or; (II) the system possesses 
only U (1)x ’s which always remain exact such that none develops 
an asymmetry in which case n�x = 0 for all x.

For instance, the baryogenesis scenario proposed in Ref. [8] fails 
due to the following reasons. In that work, there are initially four 
effective symmetries: U (1)B/3−Lα (α = {1,2,3}) and U (1)ψ̃ . During 
baryogenesis, U (1)B/3−Lα is always conserved i.e. n�(B/3−Lα) = 0
while a large enough CP asymmetry at the TeV scale requires fast 
U (1)ψ̃ violation i.e. Cψ̃ = 0. As a result, n�B = 0.

3. The roles of U (1) symmetries

In general, the reaction rate of a process γ in the early Universe 
is temperature-dependent �γ (T ). At each range of temperature 
T ∗ , by comparing �γ (T ∗) to the expansion rate of the Universe 
H(T ∗), we can categorize the reactions into three types [9,10]: 
(i) �γ (T ∗) � H (T ∗); (ii) �γ (T ∗) � H ; (iii) �γ (T ∗) ∼ H (T ∗). The 
reactions of type (i) are fast enough to establish chemical equi-
librium and are implicitly ‘resummed’ in the J matrix in Eq. (6). 
The reactions of type (ii) either do not occur or proceed slow 
enough. The former is due to exact symmetry like gauge symmetry 
while the latter is due to small couplings, and/or suppression by 
mass scale and/or temperature effects. Finally the reactions of type 
(iii) should be described by nonequilibrium formalism like Boltz-
mann equation in order to obtain quantitative prediction. In this 
work, the effective symmetries concern both reactions of types (ii) 
and (iii). In particular gauge symmetry always belongs to type (ii) 
and can play an interesting role as ‘messenger’. If an approximate 
symmetry belongs to type (ii), it can acquire a role as a ‘messenger’ 
or ‘preserver’ while if it is of type (iii), it can act as ‘creator/de-
stroyer’.

To understand the roles of U (1) alluded to above, it is illumi-
nating to group the charges as follows. Among all the charges U =
{n�x}, there is a subset U0 = {n�a} where the net charges vanish 
n�a = 0. In this case, we can remove them from the beginning and 
left with Ũ = U − U0 = {n�m} to describe the system. From Eq. (5), 
we have a set of linear equations n�a = ∑

b JabCb +∑
m JamCm = 0, 

which allows us to solve for Ca in terms of Cm .5 After eliminating 
Ca , the number density asymmetry for particle i can be expressed 
as

n�i = giζi

∑
m,n

q̃m
i

(
J̃−1

)
mn

n�n, (9)

5 We use a, b, . . . to label the charges in U0 and m, n, . . . to label the charges 
in Ũ .
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