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We demonstrate here that the metric of a planar black hole in asymptotic anti-de Sitter space can, on 
a slice of dimension 3 + 1, be reproduced as a relativistic acoustic metric. This completes an earlier 
calculation in which the non-relativistic limit was used, and also serves to obtain a concrete form of the 
Lagrangian.
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1. Introduction

The AdS/CFT duality [1–3] identifies a gravitational theory in 
asymptotic anti-de-Sitter (AdS) space with a strongly coupled con-
formal field theory (CFT) on the boundary of the same space. This 
identification can be used to translate a non-perturbative compu-
tation from a strongly coupled condensed matter system to semi-
classical gravity, and thereby make it conceptually easier to treat. 
This approach has shown much promise to deal with systems such 
as the quark gluon plasma and strange metals [4–6], whose behav-
ior is very difficult to calculate by other methods.

In a previous paper [7], we pointed out the possibility to use 
the AdS/CFT duality to arrive at a new type of duality which con-
nects a strongly coupled condensed matter system with a weakly
coupled one. This can be done by combining AdS/CFT with analog 
gravity. Analog gravity [8,9] is a way to assign an effective metric 
to certain types of weakly coupled condensed matter systems. It 
can be shown that in these systems perturbations propagate in the 
matter background according to an equation of motion identical 
to that of particles traveling in curved space. Gravitational analogs 
are known to exist for the Schwarzschild black hole [10–12] and 
expanding Friedmann–Robertson–Walker space-times that mimic 
inflation in the early universe [13–17]. Research in this area is 
presently very active, and theory and experiments both are being 
rapidly developed [18,19].

The effective metric is obtained from the behavior of the back-
ground field, and completely specified by the degrees of freedom 
of the condensed matter system. If this effective metric is also a 
gravitational dual of a strongly coupled system, then this leads to 
a relation between the two condensed matter systems that give 
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rise to the same metric. The connection between analog gravity 
and the AdS/CFT duality was also explored in [20–24].

Not all metrics can be obtained as effective analog metrics from 
condensed matter systems. It must both be possible to bring the 
metric into a specific form, which amounts to a certain gauge 
condition, and it must then be demonstrated that the condensed 
matter system needed to obtain this metric does fulfill the equa-
tions of motion. In the previous paper [7] it was demonstrated that 
the type of metrics used to model strongly coupled systems via the 
AdS/CFT duality can indeed also be obtained as effective metrics of 
a weakly coupled condensed matter system.

While intriguing evidence, this finding by itself does not suffice 
to show that there is a new duality between weakly and strongly 
coupled condensed matter systems, because the identification of 
the metric used in the AdS/CFT correspondence as an effective 
metric does only demonstrate that the semi-classical limits are
identical. It does however show that this necessary condition is 
fulfilled and thus represents a first step on the way to a more gen-
eral proof.

In the present paper, we will look at the next step, which is to 
demonstrate that there exists a relativistic completion of the sys-
tem used in [7]. In [7] it was found that the non-relativistic limit 
is good towards the boundary of AdS-space, but not close by the 
horizon. This is unfortunate because the near-horizon region is the 
most interesting part, so we will here derive a relativistic acoustic 
metric and recover the non-relativistic limit. We will find that this 
also tells us more about the form of the Lagrangian of the analog 
gravity system than could be extracted from the non-relativistic 
limit.

Throughout this paper we use units in which the speed of light 
and h̄ = 1. The constant c denotes the speed of sound and not the 
speed of light. The metric signature is (−1, 1, 1, 1). Small Greek 
indices run from zero to three. By non-relativistic we refer to the 
limit in which the four-velocity is � c.
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2. Framing the question

The most instructive way to obtain the effective analog metric 
of a fluid is to use the Lagrangian approach in a mean-field approx-
imation and then derive the equations of motion for perturbations 
around the mean [7,9,17]. It can be shown then that the perturba-
tions obey a wave-equation that is identical to the wave-equation 
in a curved background whose metric is the effective analog met-
ric. The form of the metric one obtains in this way depends on 
the Lagrangian, and we will be dealing here specifically with an 
effective metric known as the ‘acoustic metric’ because it deter-
mines the propagation of sound waves. There are other types of 
analog metrics for different systems, for example the optic metric 
[9,25–27], but these will not be discussed here.

It must be emphasized that the key finding of analog gravity 
is not trivial. While the assumption of Lorentz-invariance of the 
original Lagrangian already tells us that the resulting equation of 
motion for the perturbation must respect this symmetry too, this 
alone does not single out a wave-equation in curved space. The 
important property of the resulting equation is that it separates 
the background from the perturbations in just the right way so 
that the degrees of freedom of the background can be collected 
in something that takes the form of a metric tensor, or that the 
derivatives can be reformulated as covariant derivatives in curved 
space respectively. Just by looking at all the terms that are possi-
ble when one requires that indices are contracted suitably, there 
could be combinations between the background field and the per-
turbations that do not lend themselves to the description in terms 
of an effective metric.

Indeed, it is interesting to observe that Lorentz-invariance in 
the equations governing the propagation of the excitations can 
emerge even if the equations of the background themselves are 
in the non-relativistic limit [28]. The Lorentz-group that is relevant 
here is that in which the limiting velocity is the speed of sound, 
and not the speed of light. At high energies, this emergent Lorentz-
invariance can be violated, a phenomenon that has been used to 
study the robustness under UV-corrections of quantum field theory 
in curved background [29].

Concretely, we take a Lagrangian for a real scalar field θ of the 
form

L = L(χ(∂θ) − V ) , (1)

which depends on a kinetic energy term

χ = ημν (∂νθ)
(
∂μθ

)
(2)

and some additional potential V that may include a mass term 
(more about the potential later). η is the metric in the laboratory 
that hosts the analog gravity system. We assume that this space-
time in the laboratory is flat, i.e. that its curvature tensor vanishes. 
However, since we are free to choose a coordinate system, the met-
ric might not have the Minkowski-form.

We then make a perturbation around a background field that 
is assumed to fulfill the equations of motion, θ = θ0 + εθ1. The 
inverse of the analog metric in terms of derivatives with respect to 
the field then takes the rather simple form [7,9,17,30]

√−g gμν = −√−η
∂2L

∂(∂νθ0)∂(∂μθ0)
. (3)

Here and in the following, the lower index 0 refers to quantities 
describing the background field (at zeroth order). This metric then 
has to be rewritten into the hydrodynamic variables of the back-
ground fluid, and be inverted.

One can identify the pressure p0, the density ρ0 and the fluid-
velocity uν by comparing the stress-energy derived from the La-
grangian (1) to the familiar stress-energy tensor of a fluid, from 
which one finds

uν = ∂νθ0√
χ

, p0 = L , ρ0 = 2χ
∂L
∂χ

−L . (4)

To match this to the notation of [31], it is χ = (ρ0 + p0)
2/n2

0, 
where n0 is the particle-density of the fluid and χ is the specific 
enthalpy. The four-velocity is normalized to minus one

ημνuμuν = −1 . (5)

With these variables one then gets the acoustic metric

gμν =
(

ρ0 + p0

cχ

)(
ημν +

(
1 − c2

)
uμuν

)
, (6)

where c is the speed of sound and defined by

1

c2
= ∂ρ0

∂ p0
= 2χ∂2L/∂χ2 + ∂L/∂χ

∂L/∂χ
. (7)

What we aim to show here is that there exists a scalar field 
Lagrangian of the general form (1) that gives rise to an acoustic 
metric which describes the planar black hole in asymptotic 4 + 1
dimensional AdS that reads

ds2 = − L2

z2
γ (z)dt̃2 + L2

z2
γ (z)−1dz2 + L2

z2

3∑
i=1

dxidxi , (8)

where [5]

γ (z) = 1 −
(

z

z0

)4

. (9)

We have introduced the tilde for the coordinate t̃ for later conve-
nience. The length scale L is the AdS radius and inversely related 
to the cosmological constant. The analog gravitational system will 
have to reproduce the metric (8) on a space-like slice of dimension 
3 + 1 perpendicular to the horizon. Since the metric (8) is trans-
lationally invariant into the directions parallel to the horizon, this 
just means that for the effective metric the sum in the last term 
runs only over 1 and 2.

3. Gauging the metric

We now have to find a transformation that brings the metric 
(8) into the form (6). As noted in [7], this procedure generally 
isn’t unique and one can spend a lot of time changing coordi-
nate systems in AdS space just to then realize that the resulting 
acoustic metric cannot be derived from any Lagrangian. For this 
reason we will stay as close as possible to the transformation that 
was found to work previously and use the coordinate transforma-
tion t̃ → t = t̃ − f (z) also used earlier, but now add the rescaling 
z → z̃ = g−1(z). This transformation does not change the 1/z2

prefactor of the AdS metric, except that now z is implicitly a func-
tion of z̃. We therefore can read off

∂L
∂χ

= cL2

z2
(10)

directly by comparing (6) with (8).
Further comparing the components of the metric in the new 

coordinates with (6) one obtains
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