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We analyze the structure of the boundary terms in the conformal anomaly integrated over a manifold 
with boundaries. We suggest that the anomalies of type B, polynomial in the Weyl tensor, are accom-
panied with the respective boundary terms of the Gibbons–Hawking type. Their form is dictated by the 
requirement that they produce a variation which compensates the normal derivatives of the metric vari-
ation on the boundary in order to have a well-defined variational procedure. This suggestion agrees with 
recent findings in four dimensions for free fields of various spins. We generalize this consideration to six 
dimensions and derive explicitly the respective boundary terms. We point out that the integrated confor-
mal anomaly in odd dimensions is non-vanishing due to the boundary terms. These terms are specified 
in three and five dimensions.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

As is well-known the variational principle for the bulk action 
which includes functions of the Riemann curvature is not well 
defined in the presence of boundaries. The variation of the cur-
vature produces a normal derivative of the metric variation on the 
boundary. The elimination of this term by fixing, additionally to 
the metric itself on the boundary, also its normal derivative makes 
the problem over constrained so that no non-trivial solution to the 
corresponding field equations exists. A way out was found by Gib-
bons and Hawking [1] in 1977. They suggested that one has to 
add a boundary term which depends on the extrinsic curvature 
of the boundary. The role of this term is to cancel the unwanted 
normal derivatives of the variation of metric. This term for the 
Einstein–Hilbert action, linear in the curvature, is now known as 
the Gibbons–Hawking term.

For more general functions which may include polynomials and 
derivatives of the curvature the appropriate boundary term was 
found in [2]. In [2] it was used the fact that, by adding auxiliary 
fields, any function of the curvature can be re-written in a form 
linear in the Riemann tensor. This allowed to derive a universal 
form for the boundary term in a very general class of theories.

One of the interesting functionals of the curvature is the inte-
grated conformal anomaly. The local form of the anomaly in four 
dimensions was established in works of Duff and collaborators, [3]. 
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The general classification of the anomalies made in [4] considers 
two types of the anomaly. The anomaly of type A is given by the 
Euler density while the anomaly of type B is constructed from the 
Weyl tensor Wαβμν and its covariant derivatives. In the presence 
of boundaries one may use the extrinsic curvature of the boundary 
to construct the conformal invariant quantities. More precisely, it 
is the traceless part K̂μν = Kμν − 1

d−1 γμν K of the extrinsic curva-
ture (γμν is the induced metric on the boundary) that transforms 
homogeneously under conformal transformations, K̂μν → eσ K̂μν

if gμν → eσ gμν . Thus, in d dimensions the integrated conformal 
anomaly may have the following general form∫

Md

√
g
〈
Tμν

〉
gμν = a χ(Md) + bk

∫

Md

√
γ Ik(W )

+b′
k

∫

∂Md

√
γ Jk(W , K̂ ) + cn

∫

∂Md

√
γKn(K̂ ) , (1)

where χ(Md) is the Euler number of manifold Md , Ik(W ) are 
conformal invariants constructed from the Weyl tensor, Kn(K̂ ) are 
polynomials of degree (d − 1) of the trace-free extrinsic curvature. 
In this note we suggest that in some appropriate normalization 
b′

k = bk and that the corresponding boundary term Jk(W , K̂ ) is in 
fact the Hawking–Gibbons type term for the bulk action Ik(W ). 
In dimension d = 4 this suggestion can be tested by comparing 
our result with the direct calculation performed recently by Fur-
saev [5] for free fields of various spins (for scalar fields this was 
done earlier by Dowker and Schofield [6]). We then extend our 
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consideration to dimension d = 6 and derive the exact form for 
the boundary terms Jk(W , K̂ ).

Thus, in the presence of boundaries the only new conformal 
charges which appear to emerge are cn that are related to the 
conformal invariant expressions constructed from the trace free 
extrinsic curvature. The respective terms in the anomaly are in-
teresting since they are present even in flat spacetime. However, 
as shows the example of scalar field in d = 4 these charges may 
depend on the choice of the boundary conditions. Therefore, their 
invariant meaning is not very clear. It would be interesting to as-
sociate these charges with certain structures which appear in the 
correlation functions of the CFT stress-energy tensor when bound-
aries are present. Answering this question, however, goes beyond 
the scope of the present short note.

2. Gibbons–Hawking type boundary terms

In this section we briefly review the construction given in [2]
and then adapt it to the invariants constructed from the Weyl 
tensor. This construction uses the fact that by introducing the aux-
iliary fields any function of the curvature can be re-written in the 
form which is linear in the Riemann tensor. In the cases we are 
interested in this paper it is sufficient to add two auxiliary fields 
Uαβμν and Vαβμν . The bulk terms then take the form

Ibulk =
∫

Md

(
Uαβμν Rαβμν − Uαβμν Vαβμν + F (V )

)
, (2)

where the exact form of F (V ) depends on the original form of 
the action. Then, according to [2] in order to cancel the normal 
derivatives of the metric variation on the boundary under variation 
of (2) one should add the corresponding boundary term,

Iboundary = −
∫

Md

Uαβμν P (0)
αβμν , P (0)

αβμν

= nαnν Kβμ − nβnν Kαμ − nαnμKβν + nβnμKαν . (3)

If the bulk invariant is expressed in terms of Weyl tensor only, the 
above procedure produces the following result for a manifold with 
boundary

I[W ] =
∫

Md

(
Uαβμν Wαβμν − Uαβμν Vαβμν + F (V )

)

−
∫

Md

Uαβμν Pαβμν , (4)

where we introduced

Pαβμν = P (0)
αβμν − 1

d − 2
(gαμ P (0)

βν − gαν P (0)
βμ − gβμ P (0)

αν

+ gβν P (0)
αμ) + P (0)

(d − 1)(d − 2)
(gαμgβν − gαν gβν) ,

P (0)
μν = nμnα Kαβ + nμnα Kαν − Kμν − nμnν K , P (0) = −2K ,

(5)

where we used that nαnβ Kαβ = 0. Pαβμν has same symmetries as 
the Weyl tensor. In particular, Pα

μαν = 0.
An interesting property of Pαβμν is that it does not change if 

we redefine extrinsic curvature,

Kμν → Kμν − λγμν , Pαβμν → Pαβμν , (6)

where γμν = gμν − nμnν is the induced metric on the boundary. 
Under the conformal transformations, gμν → e2σ gμν , the extrinsic 

curvature changes as Kμν → eσ (Kμν − γμνnα∂ασ ). Therefore, the 
invariance (6) indicates that Pαβμν is a conformal tensor which 
transforms homogeneously under the conformal rescaling of met-
ric, Pαβμν → e3σ Pαβμν . Invariance (6) also means that Pαβμν can 
be rewritten entirely in terms of the trace free extrinsic curvature 
K̂μν = Kμν − 1

d−1 γμν K . The latter is of course consistent with the 
conformal symmetry of Pαβμν .

Let us consider some examples.

1. I[W ] = ∫
Md

Tr (W n). In this case we have

F (V ) = Tr (V n) , V = W , U = nW n−1 . (7)

After resolving equations for V and U one finds for a manifold 
with boundary

I[W ] =
∫

Md

Tr (W n) −
∫

∂Md

n Tr (P W n−1) , (8)

where P is defined in (5).
2. I[W ] = ∫

Md
Tr (W �W ). In this case we have

F (V ) = Tr (V �V ) , V = W , U = 2�W (9)

and after resolving equations for V and U we find

I[W ] =
∫

Md

Tr (W �W ) − 2
∫

∂Md

Tr (P�W ) . (10)

These examples will be useful in the subsequent sections.

3. Conformal anomaly in d = 4

In four dimensions the local form of the anomaly is well-known

〈T 〉 = − a

5760π2
E4 + b

1920π2
Tr W 2 ,

E4 = Rαβμν Rαβμν − 4Rμν Rμν + R2 ,

Tr W 2 = Rαβμν Rαβμν − 2Rμν Rμν + 1

3
R2 . (11)

In this normalization a scalar field has a = b = 1. The integrated 
conformal anomaly contains the bulk integrals of the rhs of (11)
and some boundary terms. In particular, the bulk integral of E4
is supplemented by some boundary terms to form a topological 
invariant, the Euler number,

χ [M4] = 1

32π2

∫

M4

E4

− 1

4π2

∫

∂M4

(K μν Rnμnν − K μν Rμν − K Rnn + 1

2
K R − 1

3
K 3

+ K Tr K 2 + 2

3
Tr K 3) , (12)

where Rμnνn = Rμανβnαnβ and Rnn = Rμνnμnν . This form for the 
boundary terms was found in [6].

On the other hand, the integral of the Weyl tensor squared 
should be supplemented by a boundary term as we explained in 
the previous section, see eq. (8) for n = 2,∫

M4

Tr W 2 − 2
∫

∂M4

Tr (W P ) . (13)

The properties of the Weyl tensor insure a simplification:
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