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We demonstrate by explicit calculations in 3+1 dimensional viscous relativistic fluid dynamics how two-
particle pseudorapidity correlation functions in heavy ion collisions at the LHC and RHIC depend on the 
number of particle producing sources and the transport properties of the produced medium. In particular, 
we present results for the Legendre coefficients of the two-particle pseudorapidity correlation function, 
an,m , in Pb+Pb collisions at 2760 GeV and Au+Au collisions at 200 GeV from viscous hydrodynamics 
with three dimensionally fluctuating initial conditions. Our results suggest that the an,m provide impor-
tant constraints on initial state fluctuations in heavy ion collisions.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The study of the Fourier coefficients vn of the azimuthal par-
ticle distribution in heavy ion collisions at the Relativistic Heavy 
Ion Collider (RHIC) and the Large Hadron Collider (LHC) has led to 
great insight into the initial state fluctuations and hydrodynamic 
evolution of the produced system [1]. In particular, it has led to 
the conclusion that the system has a very small viscosity, close to 
the lower bound conjectured using AdS/CFT correspondence [2].

Recently, the ATLAS collaboration has presented results on the 
expansion of two-particle pseudorapidity correlations into Legen-
dre polynomials [3]. The obtained coefficients contain important 
information on the fluctuations of the particle multiplicity in pseu-
dorapidity.

In this letter we explore how two-particle pseudorapidity cor-
relations from hydrodynamic calculations can give insight into the 
number of sources for particle production and their correlations, 
as well as the shear and bulk viscosity of the system. To achieve 
this, we introduce a simple initial state model that extends the 
conventional Monte Carlo (MC) Glauber model [4] to include fluc-
tuations of valence quarks in rapidity and thus produces three 
dimensional fluctuating distributions of net baryon number and 
entropy density. We then use this model to generate the input for 
3+1 dimensional viscous hydrodynamic calculations and compute 
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rapidity distributions of charged hadrons and two-particle rapid-
ity correlations. We then analyze the effect of i) the number of 
sources and ii) the shear and bulk viscosity of the system on the 
Legendre coefficients.

2. Initial state model and hydrodynamic evolution

Fluctuations in rapidity have been included in hydrodynamic 
calculations via UrQMD [5,6], EPOS [7], or AMPT [8] initial condi-
tions. To study the effect of fluctuations in rapidity in addition to 
fluctuations in the transverse plane without being dependent on a 
complicated string with many parameters, we introduce a simple 
model that is a straightforward extension to the MC Glauber model 
to include longitudinal fluctuations. In particular, we will employ 
a Monte Carlo implementation of the Lexus model [9] to provide 
a simple parametrization of the rapidity distribution of wounded 
nucleons (or constituent quarks), which is based on experimental 
observations in proton–proton collisions.

3DMC-Glauber model. For each nucleus we sample the three-
dimensional spatial distribution of nucleons from a Woods–Saxon 
distribution. We then sample valence quark positions within each 
nucleon from an exponential distribution. After overlaying the 
two nuclei in the transverse plane, separated by the sampled 
impact parameter b, wounded quarks are determined using the 
quark–quark inelastic cross-section σqq , which can be obtained 
geometrically by requiring that the experimentally determined 
nucleon–nucleon cross section is recovered. We do, however, 
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treat the quark–quark cross section in heavy ion collisions as 
an independent, free parameter. When we choose σqq = 3 mb at √

s = 200 GeV, we can reproduce the experimental multiplicity 
and pseudorapidity distribution of charged hadrons without in-
cluding additional negative binomial fluctuations. We employ a 
Gaussian wounding where quarks are determined to be partici-
pants with a Gaussian probability [10,11].

As mentioned above, to obtain the longitudinal distribution of 
the initial baryon number we employ the Lexus model [9]. Here, 
the idea is that the rapidity distribution of nucleons in heavy ion 
collisions can be obtained by linear extrapolation from the distri-
bution in p+p collisions. That distribution is parametrized and fit 
to experimental data. We use this model for valence quarks such 
that the probability for a quark with rapidity y P to end up with 
rapidity y after a collision with a quark with rapidity yT (from the 
other nucleus) is given by [9]:

Q (y − yT ,y P − yT , y − y P ) =
λ

cosh(y − yT )

sinh(y P − yT )
+ (1 − λ)δ(y − y P ) , (1)

which corresponds to a flat distribution in longitudinal momen-
tum pL . In the original work [9] λ is the fraction of nucleon–
nucleon scatterings that result in a hard collision. Here, we treat λ
as a free parameter, regulating the stopping power of the collision. 
It can be fixed by fitting the net baryon distribution to experimen-
tal data. Generally, we find a good fit to the net baryon rapidity 
distribution when σqqλ ≈ 2 mb.

The initial rapidities are distributed according to the quarks’ 
x value, which is determined by the valence quark parton distri-
bution functions (PDFs).1 Initial rapidities are thus y = ±ln(x

√
s/

2mq), with the sign depending on whether it is a quark in the pro-
jectile (+) or the target (−). We employ a valence quark mass of 
mq = 0.34 GeV and assume zero transverse momentum initially.

To systematically organize the collisions of all quarks, we have 
quark pairs collide subsequently with increasing inter-quark dis-
tance �z. We then convert rapidity to space–time rapidity ηs to 
obtain a three dimensional event-by-event distribution of quarks. 
To assign a baryon density, this distribution needs to be smeared 
and we do this by introducing Gaussians in the transverse plane 
with width σT = 0.4 fm, and width in space–time rapidity of 
σ = 0.2.

Next we determine the entropy density distribution. We deposit 
a fixed entropy between the rapidities of each wounded quark and 
its last collision partner and smear the edges with half Gaussians 
of the same width as used for the baryon density distribution. This 
leads to the following form of the rapidity dependence of the en-
tropy density per wounded quark pair

s(y,y P , yT ) = N exp[−θ(−y + min(y P , yT ))

× (y − min(y P , yT ))2/2σ 2

− θ(y − max(y P , yT ))

× (y − max(y P , yT ))2/2σ 2]
×

(
max(y P , yT ) − min(y P , yT ) + √

2πσ
)−1

, (2)

where yT and y P are the rapidities of the colliding quarks, and N
determines the normalization, which is the same for every “tube” 
and adjusted to fit the experimental data.

In the transverse plane, we smear the entropy density around 
the center of mass position of each pair by a Gaussian of width 

1 The x values are sampled from CT10 NNLO parton distribution functions [12] at 
Q 2 = 1 GeV2 with EPS09 nuclear correction [13] using LHAPDF 6.1.4 [14].

σT = 0.4 fm. This way of initializing the entropy density leads to 
the correct centrality dependence of the total multiplicity.

We note that energy and momentum conservation is not ex-
plicitly fulfilled, however, we are not including any transverse mo-
mentum production or very high momentum partons, which will 
carry away some of the energy and momentum of the collision and 
are not part of the bulk medium we are describing.

A different initial state model using random rapidities for 
wounded nucleons was employed in [17].

Hydrodynamics. We integrate the above initial condition into the 
3+1 dimensional viscous relativistic fluid dynamic simulation Mu-

sic [18–21]. In addition to numerically solving the equations for 
the conservation of energy and momentum ∂μT μν = 0, and the 
baryon current ∂μ JμB = 0, we solve the relaxation-type equations 
derived from kinetic theory [22,23]

τ��̇ + � = −ζ θ − δ���θ + λ�ππμνσμν (3)

τπ π̇〈μν〉 + πμν = 2ησμν − δπππμνθ + φ7π
〈μ
α πν〉α

− τπππ
〈μ
α σν〉α + λπ��σμν . (4)

The transport coefficients τ� , δ�� , λ�π , τπ , δππ , φ7, τππ , and 
λπ� are fixed using formulas derived from the Boltzmann equation 
near the conformal limit [23]. At zero baryon chemical potential 
the ratio η/s will be chosen to be constant in this work, and the 
temperature dependence of the ratio of bulk viscosity to entropy 
density ζ/s is parametrized as in [24,25], except that we gradually 
reduce the constant value at low temperature such that effects of 
the bulk δ f corrections [26] are kept to a minimum. Because we 
include finite baryon chemical potential μB > 0, we replace s in 
the above expressions by (ε + P )/T , motivated by the relativistic 
limit of the fluidity measure introduced in [27].

The equation of state, which includes finite baryon chemical po-
tential, is constructed by interpolating the pressures of hadronic 
resonance gas and lattice QCD [28,29].

We leave a detailed description of the initial state model and 
the newly constructed equation of state for a longer paper in the 
future.

After Cooper–Frye freeze out at an energy density of
0.1 GeV/fm3, the calculation of thermal spectra including δ f cor-
rections [26] for shear and bulk viscosities, and resonance decays, 
we obtain the final hadron spectra as functions of transverse mo-
mentum pT and pseudo-rapidity ηp .

3. Two particle rapidity correlations

The pT integrated (pT > 0.5 GeV) event-by-event rapidity dis-
tributions dN/dηp are then used to determine the two-particle 
rapidity correlation function [30]

C(η1, η2) = 〈N(η1)N(η2)〉
〈N(η1)〉〈N(η2)〉 , (5)

where N(η) = dN/dηp . We follow the ATLAS collaboration [3] and 
remove the effect of residual centrality dependence in the average 
shape 〈N(η)〉 by redefining the correlation function as [31]

CN(η1, η2) = C(η1, η2)

C p(η1)C p(η2)
, (6)

where

C p(η1/2) = 1

2Y

Y∫

−Y

C(η1, η2)dη2/1 . (7)

Importantly, the resulting distribution is then normalized such that 
the average value of CN (η1, η2) is one.
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