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There is a debate as to what is the value of the entropy S of extremal black holes. There are approaches 
that yield zero entropy S = 0, while there are others that yield the Bekenstein–Hawking entropy S =
A+/4, in Planck units. There are still other approaches that give that S is proportional to r+ or even that 
S is a generic well-behaved function of r+. Here r+ is the black hole horizon radius and A+ = 4πr2+
is its horizon area. Using a spherically symmetric thin matter shell with extremal electric charge, we 
find the entropy expression for the extremal thin shell spacetime. When the shell’s radius approaches its 
own gravitational radius, and thus turns into an extremal black hole, we encounter that the entropy is 
S = S(r+), i.e., the entropy of an extremal black hole is a function of r+ alone. We speculate that the 
range of values for an extremal black hole is 0 ≤ S(r+) ≤ A+/4.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The entropy S and thermodynamics of black holes have been 
worked out first by Bekenstein [1] and Hawking and collabora-
tors [2,3]. The Bekenstein–Hawking entropy is given by S = A+/4, 
where A+ = 4πr2+ , A+ and r+ are the horizon area and the hori-
zon radius, respectively, and we are putting all the natural con-
stants equal to one, i.e., we use Planck units. York and collabora-
tors [4–6] (see also [7,8]) have further worked out the black hole 
thermodynamic properties by using canonical and grand canonical 
thermodynamic ensembles. There are several other methods that 
can be used to study black hole thermodynamics, one that suits 
us here uses matter shells [9–11]. In this method, one studies the 
generic thermodynamics of the shells at any shell radius, and as 
one sends the shell to its own gravitational radius one recovers 
the S = A+/4 Bekenstein–Hawking entropy. This is the quasiblack 
hole method, the evident power of it was displayed in [12].

A particular class of black holes is the extremal black hole class. 
Electrically charged black holes in general relativity, the ones we 
are interested here, have m ≥ Q , and the extremal black holes 
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are characterized by having their mass m equal to their electric 
charge Q , m = Q . The extremal black holes seem to have distinct 
properties. For instance, according to the Hawking temperature 
formula, extremal black holes have zero temperature. In addition 
the entropy of an extremal black hole is a subject of a wide de-
bate as there are different reasonings that can be applied which 
lead to different values for the entropy. Hawking and collabora-
tors [13] and Teitelboim [14] have given topological arguments 
which point to the conclusion that extremal black holes have zero 
entropy. Further evidence from other arguments for S = 0 for ex-
tremal black holes was provided in [15–17], see also [18,19]. One 
could also argue, naively, that since the Hawking temperature is 
zero, then according to one of the formulations of the third law 
of thermodynamics as many textbooks present it should have zero 
entropy.

However, there remain doubts why the Bekenstein–Hawking 
formula does not hold. After all, working out the entropy of non-
extremal black holes and taking the extremal limit m = Q yields 
S = A+/4, see, e.g., [2,3,5,10]. In this case, the thermodynamic ar-
gument would not hold, the extremal black hole could be a system 
of minimum energy and degenerate ground state and such systems 
can have entropy even at zero temperature. Moreover, in string 
theory, there are arguments, other than geometrical, that make 
use of a direct counting of string and D-brane states in composite 
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systems, which manipulate carefully the turning on of gravity and 
electricity adiabatically by equal amounts to maintain extremality 
without changing the counting of states and thus the entropy, that 
show that the entropy of an extremal black hole is S = A+/4, as 
first delivered by Strominger and Vafa [20], see [21] for a review. 
Other methods also indicate the S = A+/4 value. These are meth-
ods that use quantum field corrections to the black hole entropy 
[22], Hamiltonian methods [23,24], and thermodynamics ensem-
ble methods [25–27]. There are works that show that depending 
on the black hole type, i.e., black holes with scalar fields, one has 
S = 0 or S = A+/4 [28,29].

Given that several different calculations give S = 0 or S = A+/4
one might open the box and speculate that other values for the 
entropy are possible, e.g., any value between 0 and A+/4, or pos-
sibly other functions. Indeed, in a semiclassical calculation of the 
entropy on an extremal black hole background Ghosh and Mitra 
[30] pointed to an entropy value proportional to r+ rather than 
A+ (i.e., r2+). This was followed by some discussion for the exact 
possible values for the entropy of an extremal black hole [31–33].

In addition, in a setup using an extremal charged thin shell 
contracting reversibly and arranged to maintain extremality it was 
shown in [34] that any value of the entropy of the shell in passing 
its own gravitational radius could be achieved. In another setting, 
using also thin shells, it was shown that in the quasiblack hole 
limit, i.e., when the boundary of the matter is at its own gravita-
tional radius, the entropy of the extremal black hole is a generic 
function of r+ [35].

One feature important to note is that a calculation of the stress-
energy tensor of quantum fields at the neighborhood of the event 
horizon excludes the possibility that an extremal black hole can be 
in thermal equilibrium with radiation at any temperature. An ex-
tremal black hole has zero temperature and if the temperature of 
the surrounding fields is nonzero then the stress-energy diverges 
strongly [36].

This paper is committed to the study of the entropy of ex-
tremally charged spherically symmetric thin shells of any radii, 
and in particular, to the understanding of the entropy of the sys-
tem when the radius of the shell is its own gravitational radius, 
i.e., the extremal shell spacetime turns into an extremal black hole 
spacetime. This yields an expression for the black hole entropy. 
We follow the formalism of Martinez [9] developed for electric 
non-extremal shells in [10] and for rotating BTZ spacetimes in 
[11]. The thermodynamic analysis of Callen [37] is used, as it was 
used in [9–11]. The importance of Callen’s analysis for black hole 
thermodynamics was first understood by York [4], see also [5,8]. 
Here, we restrict ourselves to spherically symmetric systems but, 
as the results have a rather general character, we believe that, 
with some minor changes, they are valid for distorted and rotat-
ing systems as well (see [11] for a rotating (2 + 1)-dimensional 
spacetime).

The work is organized as follows: In Section 2 we give the me-
chanical properties of an extremal electrically charged thin shell. 
Such type of matter is also called electrically counterpoised dust. 
In Section 3 we will analyze the first law of thermodynamics ap-
plied to such a thin shell of any radius and find the entropy of 
the spacetime. In Section 4 we take the shell to its own gravita-
tional radius and find that the entropy of an extremal black hole is 
a generic function of r+ . We also speculate on the possible values 
for the entropy of an extremal black hole. In Section 5 we display 
another interesting shell that can be taken to its own gravitational 
radius and find the corresponding entropy. In Section 6 we draw 
our conclusions.

2. The extremal charged thin shell spacetime

The Einstein–Maxwell equations in four spacetime dimensions 
are given by

Gαβ = 8π Tαβ , (1)

∇β F αβ = 4π Jα . (2)

Gαβ is the Einstein tensor, built from the spacetime metric gαβ

and its first and second derivatives, 8π is the coupling, and we 
are using units in which the velocity of light is one and the grav-
itational constant G is also put to one G = 1. Tαβ is the energy-
momentum tensor. Fαβ is the Faraday–Maxwell tensor, Jα is the 
electromagnetic four-current and ∇β denotes covariant derivative. 
The other Maxwell equation ∇[γ Fαβ] = 0, where [...] means anti-
symmetrization, is automatically satisfied for a properly defined 
Fαβ . Greek indices will be used for spacetime indices and run as 
α, β = 0, 1, 2, 3, with 0 being the time index.

The concept of thin shell is associated with the presence of 
matter in the surface that separates two partitions of spacetime, 
each with its own metric. We will be considering the case of a 
four-dimensional spherically symmetric spacetime and a spherical 
thin shell at some radius R separating an inner region Vi with 
flat metric and an outer region Vo with an extremal Reissner–
Nordström line element. Thus, for the inner region the metric is

ds2
i gi

αβdxαdxβ = −dt2
i + dr2 + r2 d�2 , r ≤ R , (3)

where xα = (ti, r, θ, φ) are the inner coordinates, with ti being 
the inner time, and (r, θ, φ) polar coordinates, and d�2 = dθ2 +
sin2 θ dφ2. For the outer region the metric is

ds2
o = go

αβdxαdxβ

= −
(

1 − m

r

)2
dt2

o + dr2

(
1 − m

r

)2
+ r2d�2 , r ≥ R , (4)

where xα = (to, r, θ, φ) are the outer coordinates, with to being the 
outer time, and (r, θ, φ) polar coordinates. In addition, m is the 
ADM mass, and Q is the electric charge. In the extremal case they 
are related by

m = Q . (5)

On the hypersurface itself, r = R , the metric is that of a 2-sphere 
with an additional time dimension, such that the line element is

ds2
	 = habdyadyb = −dτ 2 + R2(τ )d�2 , r = R , (6)

where we have chosen ya = (τ , θ, φ) as the time and spatial co-
ordinates on the shell. Latin indices apply for the components on 
the hypersurface. The time coordinate τ is the proper time for an 
observer located at the shell. The shell radius is given by the para-
metric equation R = R(τ ) for an observer on the shell. We consider 
a static shell so that R(τ ) = constant. On each side of the hypersur-
face, the parametric equations for the time and radial coordinates 
are denoted by ti = Ti(τ ), ri = Ri(τ ), and to = To(τ ), ro = Ro(τ ).

Imposing that the fluid in the shell is a perfect fluid with stress-
energy tensor Sa

b given by

Sa
b = (σ + p)uaub + pha

b , (7)

where ua is the 3-velocity of a shell element, one finds through 
the junction conditions (see, e.g., [10])

σ = m

4π R2
, (8)

p = 0 . (9)
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