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In the AdSs/CFT4 set-up, extremal three-point functions involving two giant 1/2 BPS gravitons and
one point-like 1/2 BPS graviton, when calculated using semi-classical string theory methods, match
the corresponding three-point functions obtained in the tree-level gauge theory. The string theory
computation relies on a certain regularization procedure whose justification is based on the match

between gauge and string theory. We revisit the regularization procedure and reformulate it in a way

Keywords:

AdS/CFT correspondence
Giant gravitons
Three-point functions
ABJM theory

hence not expected.

which allows a generalization to the ABJM set-up where three-point functions of 1/2 BPS operators are
not protected and where a match between tree-level gauge theory and semi-classical string theory is
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After the successful application of integrability techniques to
the planar spectral problem of the AdS5/CFT4 set-up [1], the cal-
culation of three-point functions in the same set-up has attracted
renewed attention with some recent highlights being the conjec-
ture of an all loop formula for three-point functions of single trace
operators in certain sub-sectors of N'=4 SYM [2] and the formu-
lation of certain integrability axioms for the cubic string theory
vertex [3].

We will be considering three-point functions which do not be-
long to the class of three-point functions considered in the above
references. Our three-point functions involve giant gravitons which
in the string theory language correspond to higher dimensional D-
or M-branes wrapping certain submanifolds of the string theory
background and which in the gauge theory picture are represented
by specific linear combinations of multi-trace operators, namely
Schur polynomials. Remaining in the gauge theory picture, our
three-point functions will involve two Schur polynomials and one
single trace operator, all of 1/2 BPS type. Furthermore, the three
operators will be chosen such that A1 = Ay + A3, where the A’s
are the conformal dimensions of the operators. Such three-point
functions are denoted as extremal three-point functions and are
known to require special care in the comparison between gauge
and string theory [4]. On the gauge theory side the three-point
functions of interest can be calculated using techniques from zero-
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dimensional field theories [5] (see also [6]) and on the string
theory side they can be determined by generalizing a method de-
veloped for the calculation of heavy-heavy-light correlators [7-9]
from string states to membranes [5].

In the case of the AdSs x S° correspondence the 1/2-BPS na-
ture of the operators involved implies that the three-point func-
tion considered is protected and thus should take the same value
whether calculated in string theory or in gauge theory. As pointed
out in [10] the need for special treatment of extremal correlators
in string theory is relevant here and in [11] a regularization pro-
cedure for the string theory computation which led to the desired
match between gauge and string theory was presented.

The AdSs x CP3 set-up [12] allows one to consider a simi-
lar correlator i.e. an extremal three-point function involving two
1/2 BPS giant gravitons in combination with one 1/2 BPS point-
like graviton and the methods developed in [5] for the AdSs5/CFT4
calculation can be generalized to this case as well [13]. One re-
maining subtle point is the choice of regularization procedure in
the string theory computation. In the AdS4 x CP? correspondence
three-point functions of 1/2 BPS operators are not protected and
hence in this set-up we cannot expect a match between gauge and
string theory results. In particular, this means that on one hand
we cannot justify our choice of regulator by a match between the
gauge and string theory results but on the other hand a compu-
tation of the correlator in the weakly coupled string theory will
provide us with a non-trivial prediction about the behaviour of the
correlator in the dual strongly coupled field theory. Below we will
revisit the regularization procedure employed for the AdSs x S°
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computation and modify it in a way that allows us to generalize
it to the AdS4 x CP? case. Subsequently, we carry out the string
theory calculation of the extremal three-point function involving
two giant 1/2 BPS gravitons and one point-like 1/2 BPS graviton in
AdSy x CP3.

1. Giant graviton correlators in AdSs x S° revisited

Giant gravitons in AdSs x S° are D3-branes which wrap an S3
which constitutes a subset of either AdSs or S° [14-16]. We will
consider the giants for which the wrapped sphere $3 ¢ §° and
which spin along a circle in the S® while being located at the cen-
ter of AdSs. For such giants the dual gauge theory operators are
Schur polynomials built on completely anti-symmetric Young di-
agrams and containing a single complex scalar field that we will
denote as Z [17,6]. The D3-brane action is (in units where the AdS
radius has been set to 1)

d'o (V=g - PIC4l), (1)

Sp3=———

where g, = 3, XM, XNGyn, with a,b=0, ..., 3 being the world-
volume coordinates and XM the embedding coordinates. Working
in global AdS coordinates
ds? = — cosh? pdt? + dp? + sinh? p d32

+d6? + sin 0 d¢? + cos® 6 d22, 2)
the four-form potential C4 can be written as [15]
Corxaxs = €0s* O Vol(23), (3)
where the x; are the angles of the wrapped sphere, ie. dQ2 =
dx? +sin? x1dx? + cos? x1dx2. Using the ansatz

0

o'=t, ¢=9¢@1), o =y, (4)

one can show that a D3-brane with angular momentum k is stable
when it sits at

p =0,

cos?6 =k/N, (5)

and spins at the speed of light, ¢ =1 [14]. In order to determine
the three-point function of two giant gravitons and a point-like
graviton (i.e. a chiral primary) we should determine the variation
of the Euclidean version of the D3-brane action in response to the
insertion of the desired chiral primary at the boundary of AdS and
subsequently evaluate these fluctuations on the Wick rotated gi-
ant graviton solution. As this procedure was described in detail in
[5] we shall be brief here. Denoting the spherical harmonic rep-
resenting the point-like graviton as YA (with A referring to its
conformal dimension) we can write the variation of the D3-brane
action as [5]

N 2
§S=—=cos?0 [ dic | ——YaA (07 — A?)s?
2ﬂzcos / G(A—H A (0 )s

+4[Ac0520 — sinf cos O 89] sAYA), (6)
where s2 is the bulk to boundary propagator. As our spherical har-

monic we choose

sin® g el

YA:ZAT’ (7)

which corresponds to the single trace operator Tr Z2 in the gauge
theory language. With this choice for Y the first term in eq. (6) is

finite and gives the following contribution to the three-point func-
tion structure constant

3 \/—k k\2/?
Cﬁnite=_ AN 1_N ) (8)

whereas the contribution coming from the term with square brack-
ets takes the form of a divergent integral with a pre-factor which
tends to zero. In Ref. [11] it was proposed to regularize the diver-
gent integral by replacing the simple spherical harmonic YA with
the more involved one

Yasona =Nagsin®0e 29 yF (=1, A+1+2; A+1;5in%6), (9)

where N is a normalization factor, and to consider the limit
I — 0 where Ya121,Ao — Ya, and where the contribution from the
ill defined term of eq. (6) becomes finite. This procedure leads to a
match between the string and gauge theory computation. The ob-
tained match justifies the choice of the regularization procedure
but does not suggest a general principle that one could build on
when aiming at a generalization to giant gravitons in AdS4 x CP3.
One property which characterizes the spherical harmonic (9) is
that it extends the simple one without making use of additional
coordinates on S°. However, this property is somewhat deceptive
and is not the correct clue to an extension to the AdS; x CP3 set-
up.

Here we shall formulate the regularization procedure in a
slightly different manner which will allow us to generalize it to
the latter set-up. For that purpose we make use of the fact that
spherical harmonics on S° are in one-to-one correspondence with
symmetric traceless SO(6) tensors. In particular (leaving out nor-
malization factors) the spherical harmonic (7), which translates
into Tr Z2 in the field theory, corresponds to the tensor!

C1.. 12, .2=i% (10)
—— ——

A-k k
where symmetrization is understood. It is easy to show that adding
more indices of type 1 and type 2 to the tensor (i.e. adding more
fields of type ®; and &, to the operator) does not regularize the
divergent integral. However, one can regularize the integral by con-
sidering the following symmetric traceless tensor

C1...12...23...34.. .4=i""", (11)

A—k k 2l-n n

where n < 2l and subsequently taking the limit [ — 0. Obviously,
the gauge theory operator resulting from this tensor involves the
complex field Y = ®3 4+ id4 in addition to the complex field Z. It
is easy to check that the spherical harmonic (9) corresponds to an
operator involving all six scalar fields of A" =4 SYM but it is not
straightforward to express the corresponding C-tensor in a closed
form. The tensor (11) translates into the following spherical har-
monic

Yar=Narsin®(0)e'®? cos®(16) sin( xq) %! %2, (12)

where N, is another normalization constant. Using this spherical
harmonic instead of Y when evaluating the second line of (6) and
subsequently taking the limit [ — 0 gives us the following result
for the regularized contribution to the three-point function

! The chiral primary operators of N' =4 SYM can be written in the form

C}liz"'iA Tr(®;, D, ... Pi,) where the ®;'s can be any of the six real scalar fields
and where C; is a symmetric traceless tensor. We take the complex scalar field Z
to be given by Z = &1 +i®;.
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