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In the AdS5/CFT4 set-up, extremal three-point functions involving two giant 1/2 BPS gravitons and 
one point-like 1/2 BPS graviton, when calculated using semi-classical string theory methods, match 
the corresponding three-point functions obtained in the tree-level gauge theory. The string theory 
computation relies on a certain regularization procedure whose justification is based on the match 
between gauge and string theory. We revisit the regularization procedure and reformulate it in a way 
which allows a generalization to the ABJM set-up where three-point functions of 1/2 BPS operators are 
not protected and where a match between tree-level gauge theory and semi-classical string theory is 
hence not expected.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

After the successful application of integrability techniques to 
the planar spectral problem of the AdS5/CFT4 set-up [1], the cal-
culation of three-point functions in the same set-up has attracted 
renewed attention with some recent highlights being the conjec-
ture of an all loop formula for three-point functions of single trace 
operators in certain sub-sectors of N = 4 SYM [2] and the formu-
lation of certain integrability axioms for the cubic string theory 
vertex [3].

We will be considering three-point functions which do not be-
long to the class of three-point functions considered in the above 
references. Our three-point functions involve giant gravitons which 
in the string theory language correspond to higher dimensional D-
or M-branes wrapping certain submanifolds of the string theory 
background and which in the gauge theory picture are represented 
by specific linear combinations of multi-trace operators, namely 
Schur polynomials. Remaining in the gauge theory picture, our 
three-point functions will involve two Schur polynomials and one 
single trace operator, all of 1/2 BPS type. Furthermore, the three 
operators will be chosen such that �1 = �2 + �3, where the �’s 
are the conformal dimensions of the operators. Such three-point 
functions are denoted as extremal three-point functions and are 
known to require special care in the comparison between gauge 
and string theory [4]. On the gauge theory side the three-point 
functions of interest can be calculated using techniques from zero-

* Corresponding author.
E-mail addresses: kristjan@nbi.ku.dk (C. Kristjansen), moriste@nbi.ku.dk

(S. Mori), d.young@qmul.ac.uk (D. Young).

dimensional field theories [5] (see also [6]) and on the string 
theory side they can be determined by generalizing a method de-
veloped for the calculation of heavy–heavy–light correlators [7–9]
from string states to membranes [5].

In the case of the AdS5 × S5 correspondence the 1/2-BPS na-
ture of the operators involved implies that the three-point func-
tion considered is protected and thus should take the same value 
whether calculated in string theory or in gauge theory. As pointed 
out in [10] the need for special treatment of extremal correlators 
in string theory is relevant here and in [11] a regularization pro-
cedure for the string theory computation which led to the desired 
match between gauge and string theory was presented.

The AdS4 × CP3 set-up [12] allows one to consider a simi-
lar correlator i.e. an extremal three-point function involving two 
1/2 BPS giant gravitons in combination with one 1/2 BPS point-
like graviton and the methods developed in [5] for the AdS5/CFT4
calculation can be generalized to this case as well [13]. One re-
maining subtle point is the choice of regularization procedure in 
the string theory computation. In the AdS4 × CP3 correspondence 
three-point functions of 1/2 BPS operators are not protected and 
hence in this set-up we cannot expect a match between gauge and 
string theory results. In particular, this means that on one hand 
we cannot justify our choice of regulator by a match between the 
gauge and string theory results but on the other hand a compu-
tation of the correlator in the weakly coupled string theory will 
provide us with a non-trivial prediction about the behaviour of the 
correlator in the dual strongly coupled field theory. Below we will 
revisit the regularization procedure employed for the AdS5 × S5
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computation and modify it in a way that allows us to generalize 
it to the AdS4 × CP3 case. Subsequently, we carry out the string 
theory calculation of the extremal three-point function involving 
two giant 1/2 BPS gravitons and one point-like 1/2 BPS graviton in 
AdS4 ×CP3.

1. Giant graviton correlators in AdS5 × S5 revisited

Giant gravitons in AdS5 × S5 are D3-branes which wrap an S3

which constitutes a subset of either AdS5 or S5 [14–16]. We will 
consider the giants for which the wrapped sphere S3 ⊂ S5 and 
which spin along a circle in the S5 while being located at the cen-
ter of AdS5. For such giants the dual gauge theory operators are 
Schur polynomials built on completely anti-symmetric Young di-
agrams and containing a single complex scalar field that we will 
denote as Z [17,6]. The D3-brane action is (in units where the AdS 
radius has been set to 1)

S D3 = − N

2π2

∫
d4σ

(√−g − P [C4]
)
, (1)

where gab = ∂a X M∂b X N G MN , with a, b = 0, . . . , 3 being the world-
volume coordinates and X M the embedding coordinates. Working 
in global AdS coordinates

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ d�̃2
3

+ dθ2 + sin2 θ dφ2 + cos2 θ d�2
3, (2)

the four-form potential C4 can be written as [15]

Cφχ1χ2χ3 = cos4 θ Vol(�3), (3)

where the χi are the angles of the wrapped sphere, i.e. d�2
3 =

dχ2
1 + sin2 χ1dχ2

2 + cos2 χ1dχ2
3 . Using the ansatz

ρ = 0, σ 0 = t, φ = φ(t), σ i = χi, (4)

one can show that a D3-brane with angular momentum k is stable 
when it sits at

cos2 θ = k/N, (5)

and spins at the speed of light, φ̇ = 1 [14]. In order to determine 
the three-point function of two giant gravitons and a point-like 
graviton (i.e. a chiral primary) we should determine the variation 
of the Euclidean version of the D3-brane action in response to the 
insertion of the desired chiral primary at the boundary of AdS and 
subsequently evaluate these fluctuations on the Wick rotated gi-
ant graviton solution. As this procedure was described in detail in 
[5] we shall be brief here. Denoting the spherical harmonic rep-
resenting the point-like graviton as Y� (with � referring to its 
conformal dimension) we can write the variation of the D3-brane 
action as [5]

δS = N

2π2
cos2 θ

∫
d 4σ

(
2

� + 1
Y� (∂2

t − �2) s�

+ 4
[
� cos2 θ − sin θ cos θ ∂θ

]
s�Y�

)
, (6)

where s� is the bulk to boundary propagator. As our spherical har-
monic we choose

Y� = sin� θ ei�φ

2�/2
, (7)

which corresponds to the single trace operator Tr Z� in the gauge 
theory language. With this choice for Y� the first term in eq. (6) is 

finite and gives the following contribution to the three-point func-
tion structure constant

C3
finite = −√

�
k

N

(
1 − k

N

)�/2

, (8)

whereas the contribution coming from the term with square brack-
ets takes the form of a divergent integral with a pre-factor which 
tends to zero. In Ref. [11] it was proposed to regularize the diver-
gent integral by replacing the simple spherical harmonic Y� with 
the more involved one

Y�+2l,� = N�,l sin� θ ei � φ
2 F1(−l,�+ l + 2;�+ 1; sin2 θ), (9)

where N�,l is a normalization factor, and to consider the limit 
l → 0 where Y�+2l,� → Y� , and where the contribution from the 
ill defined term of eq. (6) becomes finite. This procedure leads to a 
match between the string and gauge theory computation. The ob-
tained match justifies the choice of the regularization procedure 
but does not suggest a general principle that one could build on 
when aiming at a generalization to giant gravitons in AdS4 × CP3. 
One property which characterizes the spherical harmonic (9) is 
that it extends the simple one without making use of additional 
coordinates on S5. However, this property is somewhat deceptive 
and is not the correct clue to an extension to the AdS4 ×CP3 set-
up.

Here we shall formulate the regularization procedure in a 
slightly different manner which will allow us to generalize it to 
the latter set-up. For that purpose we make use of the fact that 
spherical harmonics on S5 are in one-to-one correspondence with 
symmetric traceless SO(6) tensors. In particular (leaving out nor-
malization factors) the spherical harmonic (7), which translates 
into Tr Z� in the field theory, corresponds to the tensor1

C1 . . . 1︸ ︷︷ ︸
�−k

2 . . . 2︸ ︷︷ ︸
k

= i k, (10)

where symmetrization is understood. It is easy to show that adding 
more indices of type 1 and type 2 to the tensor (i.e. adding more 
fields of type �1 and �2 to the operator) does not regularize the 
divergent integral. However, one can regularize the integral by con-
sidering the following symmetric traceless tensor

C1 . . . 1︸ ︷︷ ︸
�−k

2 . . . 2︸ ︷︷ ︸
k

3 . . . 3︸ ︷︷ ︸
2l−n

4 . . . 4︸ ︷︷ ︸
n

= i k+n, (11)

where n < 2l and subsequently taking the limit l → 0. Obviously, 
the gauge theory operator resulting from this tensor involves the 
complex field Y = �3 + i�4 in addition to the complex field Z . It 
is easy to check that the spherical harmonic (9) corresponds to an 
operator involving all six scalar fields of N = 4 SYM but it is not 
straightforward to express the corresponding C-tensor in a closed 
form. The tensor (11) translates into the following spherical har-
monic

Y� l = N� l sin�(θ) ei�φ cos2(l θ) sin2(l χ1) e2i l χ2 , (12)

where N� l is another normalization constant. Using this spherical 
harmonic instead of Y� when evaluating the second line of (6) and 
subsequently taking the limit l → 0 gives us the following result 
for the regularized contribution to the three-point function

1 The chiral primary operators of N = 4 SYM can be written in the form 
C i1 i2 ...i�

I Tr(�i1 �i2 . . .�i� ) where the �i ’s can be any of the six real scalar fields 
and where C I is a symmetric traceless tensor. We take the complex scalar field Z
to be given by Z = �1 + i�2.
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