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The possibility of maintaining entanglement in a quantum system at finite, even high, temperatures – 
the so-called ‘hot entanglement’ – has obvious practical interest, but also requires closer theoretical 
scrutiny. Since quantum entanglement in a system evolves in time and is continuously subjected to 
environmental degradation, a nonequilibrium description by way of open quantum systems is called for. 
To identify the key issues and the contributing factors that may permit ‘hot entanglement’ to exist, 
or the lack thereof, we carry out a model study of two spatially-separated, coupled oscillators in a 
shared bath depicted by a finite-temperature scalar field. From the Langevin equations we derived for 
the normal modes and the entanglement measure constructed from the covariance matrix we examine 
the interplay between direct coupling, field-induced interaction and finite separation on the structure of 
late-time entanglement. We show that the coupling between oscillators plays a crucial role in sustaining 
entanglement at intermediate temperatures and over finite separations. In contrast, the field-induced 
interaction between the oscillators which is a non-Markovian effect becomes very ineffective at high 
temperature. We determine the critical temperature above which entanglement disappears to be bounded 
in the leading order by the inverse frequency of the center-of-mass mode of the reduced oscillator 
system, a result not unexpected, which rules out hot entanglement in such settings.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recently Galve et al. [1,2] pointed out the possibility of keep-
ing quantum entanglement alive in a system at high temperatures 
by driving the system of two oscillators with a time-dependent 
interaction term. This is important in practical terms because if en-
tanglement in a quantum open system can be maintained at high 
temperatures, it eases the way to how devices for quantum in-
formation processing can be conceptualized and designed. From 
a theoretical viewpoint understanding the basic mechanisms of 
obtaining this so-called ‘hot entanglement’ [3] is also of great in-
terest.

Before beginning the analysis, we note the word ‘hot’ con-
veys three layers of meaning in three different contexts, referring 
to quantum systems A) kept in thermal equilibrium at all times, 
B) in a nonequilibrium condition and evolving, possibly but not nec-
essarily, toward an equilibrium state, and C) in a nonequilibrium 
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steady state at late times. In this study we derive the fully nonequi-
librium dynamics of a system of two coupled quantum harmonic 
oscillators interacting with a common bath described by a bosonic 
field at finite temperature T . Thus our present work falls under 
Case B, which is in contrast to Case A [4,5], where a quantum sys-
tem is assumed to be already in equilibrium and remains that way. 
We depict how entanglement of the open quantum system evolves 
in time and derive the critical temperature above which entan-
glement cannot survive. In an accompanying paper [6] we study 
one subcase of Case C, that of a quantum system in nonequilib-
rium steady state (NESS) at late times, using the framework and 
results obtained in [7]. The system we analyze consists of two cou-
pled quantum harmonic oscillators each interacting with its own 
bath, described by a scalar field, set at two different temperatures 
T1 > T2 which together form the environment. Carrying out a fully 
systematic analysis of how quantum entanglement in open sys-
tems under different nonequilibrium conditions evolves is, in our 
view, a necessity before any claim of “hot entanglement” can be 
asserted.

In terms of methodology our present study makes use of the 
conceptual framework of quantum open systems [8] and the tech-
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niques of nonequilibrium quantum field theory [9]. It is a finite 
temperature generalization of our recent work [10] where the en-
tanglement behavior at late times between two coupled and spa-
tially separated oscillators interacting with a common bath mod-
eled by a scalar field at zero temperature is analyzed in detail. 
That work in turn is a generalization of the paper of Lin and Hu 
[11] with coupling between the two oscillators added in the con-
sideration.

2. System setup

Our system is made up of two spatially separated coupled 
detectors, which are entities with internal degrees of freedom 
(idf) χ1,2. The idf of each detector is described by a harmonic os-
cillator of mass m and bare frequency ωb . This system is placed in 
a common finite-temperature bath modeled by a massless scalar 
field φ initially prepared in a thermal state at temperature β−1. 
The system is allowed to interact with the bath initially at t = 0. 
We want to track down its evolution in time, derive the entan-
glement dynamics between the two detectors at late times and 
determine the critical temperature above which entanglement no 
longer exists.

The action of the whole system is

S[χ,φ] =
∫

ds

[ 2∑
i=1

m

2
χ̇2

i (s) − mω2
b

2
χ2

i (s)

]

−
∫

ds mσ χ1(s)χ2(s)

+
∫

d4x j(x)φ(x) +
∫

d4x
1

2
∂μφ∂μφ , (1)

where the current j(x) takes the form j(x) = e 
∑2

i=1 χi(t) δ(3)[x −
zi(t)]. The spacetime coordinate x is understood as a shorthand 
notation of (t, x). The parameter σ in the action is the coupling 
strength between the two idfs, while e is the coupling constant 
between each idf and the bath. We have written down the action 
to allow for the detectors to move along an arbitrary yet prescribed 
trajectory zi(t). In this work we assume they stay at rest through-
out.

When the initial state of the idf has a Gaussian form, the re-
duced density matrix of the idf can be found exactly with the 
help of the influence functional formalism in the closed-time path 
integral framework. This enables us to obtain the full-time dynam-
ics of the reduced system under the influence of the environment 
for arbitrary coupling strengths, as was done in full detail in [10]. 
Here, to highlight the physics behind thermal entanglement, we 
opt for a simpler, more physically transparent yet no less general 
way, by means of the Langevin equation approach, which has been 
shown to be totally compatible with the reduced-density-matrix 
description for linear systems [7]. For the current configuration, 
the Langevin equations of, say, χ1 is given by

m χ̈1(t) + mω2
b χ1(t) + mσ χ2(t)

− e2

t∫
0

ds′ [G R(z1, s; z1, s′)χ1(s′) + G R(z1, s; z2, s′)χ2(s′)
]

= ξ1(t) . (2)

In Eq. (2), in addition to the restoring force −mω2
bχ1 and the direct 

coupling mσχ2(t) with the other idf, the essential (most interest-
ing) physics is contained in the nonlocal interactions generated by 
the system’s interaction with its environment, and the stochastic 
driving force ξ1 which recounts both the quantum and thermal 

noises originating from the heat bath at the location of Detector 1. 
It obeys the Gaussian statistics with 〈ξ1(t)〉 = 0 and 〈ξ1(t)ξ1(t′)〉 =
e2 G H (z1, t; z1, t′), where G H (x, x′) = 1

2 〈{φ(x), φ(x′)}〉, with { , } de-
noting symmetrization, is the Hadamard function of the scalar 
field. In addition, nonzero correlation of the bath between the loca-
tions of detector 1 and 2 implies 〈ξ1(t)ξ2(t′)〉 = e2 G H (z1, t; z2, t′). 
The 〈· · · 〉 can represent the ensemble average or the quantum ex-
pectation values, depending on the context.

The nonlocal expressions in (2) containing the retarded Green 
function G R(x, x′) = i θ(t − t′)[φ(x), φ(x′)] of the scalar field, with 
[ , ] denoting anti-symmetrization, embrace the dissipative self-
force and the history-dependent non-Markovian interaction be-
tween the two idfs as the consequences of coupling between the 
idfs and the bath. In particular, these nonlocal expressions are 
independent of the initial bath state. Essentially the stochastic 
forcing term and the nonlocal terms in (2) capture the overall in-
fluences from the environment. The temporal Fourier transforms 
of these two kernel functions G H and G R are connected via the 
fluctuation–dissipation relation,

G H (R, κ) = coth
βκ

2
Im G R(R, κ),

where G(R, τ ) =
∞∫

−∞

dκ

2π
G(R, κ) e−iκτ . (3)

In certain contexts it signifies a balance between the energy trans-
fer via noise from, and the dissipation back to, the environment. 
Thus the stochastic equations of motion of χ1, χ2 describe a set 
of coupled, damped, driven oscillators undergoing non-Markovian 
dynamics.

3. Dynamics

The set of equations of motion for χ1, χ2 in fact can be decou-
pled into the center of mass (CoM) mode χ+ = (χ1 + χ2)/2 and 
the relative mode χ− = χ1 − χ2 [10],

χ̈+(t) + 2γ χ̇+(t) − 2γ
θ(t − �)

�
χ+(t − �) + ω2+ χ+(t)

= 1

m
ξ+(t) , (4)

χ̈−(t) + 2γ χ̇−(t) + 2γ
θ(t − �)

�
χ−(t − �) + ω2− χ−(t)

= 1

m
ξ−(t) . (5)

Here the damping term and the retarded term are derived from 
the nonlocal expressions in (2). However, the nonlocal term that is 

proportional to G R(z1, t; z1, t′) = − 1

2π
θ(t − t′) δ′(t − t′) is poten-

tially divergent because

t∫
0

dt′ G R(z1, t; z1, t′)χ1(t
′)

= δ(0)

2π
χ1(t) − 1

2π

t∫
0

dt′ δ(t − t′)χ ′
1(t

′) . (6)

This divergent expression can be absorbed into the bare frequency 
ωb to form a renormalized frequency ω by

ω2 = ω2
b + δω2 , with δω2 = −4γ δ(0) . (7)
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