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We study two phases of a heterotic standard model, obtained from a Calabi–Yau compactification of the 
E8 × E8 heterotic string, in the context of the associated four-dimensional effective theories. In the first 
phase we have a standard model gauge group, an MSSM spectrum, four additional U (1) symmetries and 
singlet fields. In the second phase, obtained from the first by continuing along the singlet directions, 
three of the additional U (1) symmetries are spontaneously broken and the remaining one is a B–L
symmetry. In this second phase, dimension five operators inducing proton decay are consistent with 
all symmetries and as such, they are expected to be present. We show that, contrary to this expectation, 
these operators are forbidden due to the additional U (1) symmetries present in the first phase of the 
model. We emphasise that such “unexpected” absences of operators, due to symmetry enhancement at 
specific loci in the moduli space, can be phenomenologically relevant and, in the present case, protect 
the model from fast proton decay.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A widely accepted dictum is that all the couplings that are al-
lowed by the symmetries of an effective field theory (EFT) should 
be present in the Lagrangian. In the present letter, we point out 
that care has to be taken when this principle is applied to EFTs 
from string theory. We will present an explicit example, in the con-
text of a standard model derived from heterotic string theory on 
Calabi–Yau manifolds, where this principle appears to be violated, 
at least when thinking about the associated EFT in the standard 
way. One of the relevant key facts is that string theory can lead to 
symmetry enhancement at particular loci in moduli space. These 
additional symmetries are not directly visible at a generic locus 
since the corresponding gauge bosons are massive and removed 
from the EFT. Yet, these symmetries can still forbid certain opera-
tors everywhere in moduli space, thereby leading to “unexpected” 
absences of operators.

Our example model is based on a heterotic line bundle model 
on a certain Calabi–Yau manifold which has been constructed in 
two previous publications [1,2]. Here, we will focus on the associ-
ated low-energy theory and explain the effect purely in terms of 
the four-dimensional N = 1 EFT. We will discuss and compare two 
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phases of this EFT, both of which have been obtained from a string 
construction. The first phase arises at a specific locus in mod-
uli space and corresponds to an MSSM with four additional U (1)

symmetries and a number of fields uncharged under the Standard 
Model gauge group. The additional singlets in this model can be 
interpreted as bundle moduli and, from a low-energy perspective, 
they are candidates for right-handed neutrinos. The second phase 
which arises at a more generic locus in moduli space corresponds 
to an MSSM with an additional U B–L(1) symmetry. In low-energy 
terms, it can be obtained from the first phase by continuation 
along the singlet directions thereby spontaneously breaking three 
of the four U (1) symmetries while leaving U B–L(1) unbroken.

Our point concerns the allowed operators in the second, generic 
phase with U B–L(1) symmetry.1 It is well-known that dimension 
five operators inducing proton decay are allowed by U B–L(1). Fol-
lowing the general lore, we should, therefore, expect that these op-
erators are present in the generic phase of our model. This would 
imply a serious phenomenological problem with proton stability. 
However, it turns out that the enhanced U (1)4 gauge symmetry 

1 The U B–L(1) symmetry is a linear combination of the hypercharge and an ad-
ditional U (1) symmetry with massive gauge boson. The latter U (1) manifests itself 
at low energies as a global symmetry. This approach is different from the one stud-
ied in [3,4]. To prevent the proton from fast decay the authors in [3,4] considered 
models with local U B–L(1) symmetry which then has to be violated by radiative 
corrections at scales below the string scale but higher than the electroweak scale 
[5,6].
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which arises at the specific locus in moduli space comes to the 
rescue. Not only does this enhanced symmetry forbid the dimen-
sion five operators in question, it also forbids all such operators 
with additional singlet insertions. This means that these operators 
remain forbidden even when we turn on singlet vacuum expecta-
tion values and move away from the enhanced symmetry locus.

To explain this in detail, we define the two relevant effective 
field theories in Sections 2 and 3, respectively, and present their 
field content and their allowed superpotential couplings. We dis-
cuss the implications of the U (1) symmetries at the enhanced 
symmetry locus and throughout the moduli space, in particular 
the resulting absence of dimension five proton decay operators. We 
conclude in Section 4.

2. The theory with enhanced symmetry

We begin by describing the four-dimensional N = 1 theory at 
the locus with enhanced symmetry, starting with the particle spec-
trum and followed by the key features of the effective action.

2.1. Spectrum

We consider an effective field theory with the standard model 
gauge group GSM = SU(3) × SU(2) × U (1) and with an additional 
U (1)4 symmetry group which significantly constrains the theory. 
Such models with extra U (1) symmetries arise from compactifica-
tions of the E8 × E8 heterotic string theory at specific loci in the 
moduli space where the structure group of the vector bundle de-
generates [7–9]. The gauge bosons of these extra U (1) groups can 
be massive or massless depending on the details of the model. If 
the gauge boson is massive the corresponding U (1) group appears 
at low energies as a global symmetry. It is convenient to describe 
these additional U (1) symmetries by the group S(U (1)5) whose 
factors we label by indices a, b, . . . = 1, . . . 5. Its representations are 
denoted by five-dimensional integral vectors

q = (q1, . . . ,q5) (1)

with the understanding that two charge vectors q and q′ are iden-
tified, if q − q′ ∈ Zn, where n = (1, 1, 1, 1, 1).

The gravitational spectrum of the model consists of the dilaton, 
S , four Kähler moduli T i = ti + iχ i (where ti are the geometrical 
fields, measuring the size of Calabi–Yau two-cycles, and χ i are the 
associated axions) plus complex structure moduli which will not 
play an essential role in our discussion. The axions χ i transform 
non-linearly under the S(U (1)5) symmetry2 as

δaχ
i = −ka

i . (2)

In the rest of the paper we will concentrate on the specific 
model constructed in [1,2]. For our model, the integers ka

i are ex-
plicitly given by

(
ka

i) =

⎛
⎜⎜⎝

−1 −1 0 1 1
0 −3 1 1 1
0 2 −1 −1 0
1 2 0 −1 −2

⎞
⎟⎟⎠ (3)

Let us review the properties of the resulting low-energy the-
ory (see [1,2] for details). As was discussed above, the symmetry 
group of the low-energy effective theory is GSM × S(U (1)5). In this 
case, three out of the four U (1) gauge bosons receive string scale 
Stückelberg masses and the remaining one is massless.

The matter spectrum consists of the following multiplets

2 The dilatonic axion also receives a non-trivial transformation at one-loop order. 
However, this does not affect our discussion.

2 Q e2 2 ue2 2 ee2 Q e4 ue4 ee4

2 Le4+e5 2 de4+e5 Le2+e5 de2+e5

He2+e4 H̄−e2−e4

3 Se2−e1 3 Se4−e1 5 Se2−e3 3 Se2−e5 Se4−e3 , (4)

where the subscripts indicate the S(U (1)5) charges and ea de-
note the standard unit vectors in five dimensions. The first three 
lines represent a perfect MSSM spectrum, however with specific 
S(U (1)5) charges for each multiplet. In addition, we also have 
a spectrum of singlets, S , which are neutral under the standard 
model group but charged under S(U (1)5). Note that the S(U (1)5)

charge of the standard model multiplets only depends on the SU(5)

GUT multiplet they reside in, so that, for each family, the multi-
plets in 10 = [Q , u, e] have the same S(U (1)5) charge, as do the 
multiplets in 5 = [d, L]. This fact is related to the underlying group 
structure of the model, which originates from an SU(5) GUT bro-
ken by a Wilson line.

The above spectrum is apparently anomalous. Indeed, one can 
compute the mixed U (1)–G2

SM anomaly to find

AU (1)−G2
SM

=
∑

all families

(
3 q(10) + q(5)

) = (0,7,0,5,3) . (5)

However, these anomalies (as well as the cubic and mixed gravita-
tional anomalies) are cancelled by the Green–Schwarz mechanism, 
facilitated by the axionic shifts (2).

If we describe linear combinations of the U (1) symmetries by 
vectors v = (va) (demanding that v · n = 0 to remove the overall 
U (1)), then massless vector bosons are characterised by the equa-
tion ka

i va = 0. Applying this to Eq. (3) shows that, for our model, 
three of the four U (1) symmetries are Stückelberg massive, while 
the linear combination v = (−4, 1, 6, −4, 1) remains massless.

2.2. Effective action

The Kähler potential has the standard form

K = − log(S + S̄) − log(κ) + Kcs + G I J C I C̄ J , (6)

where Kcs is the complex structure Kähler potential which will not 
be needed explicitly and C I collectively denote all matter fields 
listed previously. The specific form of the matter field Kähler met-
ric G I J is not relevant to our discussion and it will be sufficient 
to know that it is positive definite. The pre-potential, κ , for the 
Kähler moduli is explicitly given by3

κ = dijktit jtk = 12(t1 t2 t3 + t1 t2 t4 + t1 t3 t4 + t2 t3 t4) , (7)

and this equation defines the topological numbers dijk for our 
model. We also note that the allowed range of the moduli ti (the 
Kähler cone of the underlying manifold) is ti > 0, for i = 1, 2, 3, 4.

From this Kähler potential and the S(U (1)5) symmetry transfor-
mations given earlier, we can compute the S(U (1)5) D-terms Da . 
Their general form is [8]4

Da = 3

κ
ka

idi jkt jtk +
∑
I, J

qa(C I )C I C̄ J (8)

where qa(C I ) denotes the S(U (1)5) charges of the matter fields. 
Due to the special unitary nature of the group these D-terms 

3 For ease of notation, we will write explicit indices of the fields ti as subscripts.
4 In addition, there is also a one-loop correction to this D-term, resulting from 

the transformation of the dilatonic axion, which we omit. This correction does not 
affect our discussion.
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