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We consider field quantization on an arbitrary null hypersurface in curved spacetime. We discuss the de 
Sitter horizon as the simplest example, relating the horizon quantization to the standard Fock space in 
the cosmological patch. We stress the universality of null-hypersurface kinematics, using it to generalize 
the Unruh effect to vacuum or thermal states with respect to null “time translations” on arbitrary (e.g. 
non-stationary) horizons. Finally, we consider a general pure state on a null hypersurface, which is 
divided into past and future halves, as when a bifurcation surface divides an event horizon. We present 
a closed-form recipe for reducing such a pure state into a mixed state on each half-hypersurface. This 
provides a framework for describing entanglement between spacetime regions directly in terms of their 
causal horizons. To illustrate our state-reduction recipe, we use it to derive the Unruh effect.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and summary

Lightfront quantization [1–4] is an approach to quantum field 
theory that replaces constant-time hypersurfaces with null hy-
perplanes. In this paper, we consider the analogous quantization 
on arbitrary null hypersurfaces (hereafter, “horizons”) in curved 
spacetime. A key advantage of lightfront quantization is that the 
physical vacuum can be constructed kinematically, regardless of 
interactions [1]. This is accomplished by defining the vacuum in 
terms of the generator of null “time translations” along the light-
front. We will perform a similar construction for an arbitrary 
choice of null “time” on a general horizon. As the simplest ex-
ample, we will discuss de Sitter space, where the Bunch–Davies 
vacuum [5] can be viewed [6] as the vacuum with respect to an 
affine null time along the cosmological horizon. We will rephrase 
the latter argument within the lightfront approach, stressing that it 
extends to interacting theories. We will then show how the natural 
Fock space on the de Sitter horizon captures the standard spatial 
momentum modes in the cosmological patch.

Physically, null hypersurfaces act as causal boundaries between 
spacetime regions. In particular, a pair of intersecting horizons 
divides spacetime into quadrants, of which the two spacelike-
separated ones contain the evolution of two “halves of space”. 
The entanglement between such regions is an important subject 
in quantum field theory, with implications for black hole thermo-
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dynamics [7,8] and renormalization flows [9,10]. It is most often 
described in terms of Hilbert spaces on spacelike hypersurfaces that 
lie in the appropriate spacetime regions. However, a more natu-
ral description would be in terms of the horizons themselves. This 
is the central goal of this paper. Specifically, we consider a hori-
zon divided into halves along a spatial surface (or, equivalently, 
an intersection with a second horizon). We then present a recipe 
for reducing a pure state on the horizon into mixed states on its 
two halves. In some cases, e.g. de Sitter horizons and null hy-
perplanes in flat spacetime, these half-horizon states are causally 
equivalent to states in the two “halves of space” (in the flat case, 
up to data on a single lightray at null infinity). In other cases, 
e.g. a Schwarzschild horizon, reconstructing the spatial state re-
quires additional boundary data. However, even then, the state 
on the horizon may capture the relevant entanglement, as in the 
Hawking–Unruh effect [11].

To illustrate our recipe for restricting states to half-horizons, 
we will use it to derive the Unruh effect: the vacuum state with 
respect to a null “time” u on a horizon is thermal with tempera-
ture 1/2π with respect to the “time” τ = ln u on the half-horizon 
u > 0. Irrespective of our particular derivation, we stress that the 
universal form of null horizon kinematics allows us to immediately 
generalize the Unruh effect to arbitrary null “time” parameters 
on arbitrary curved horizons. We will use this fact to obtain the 
restriction of a global thermal state to a half-horizon, with an ap-
plication to the causal diamonds of a de Sitter observer.

We assume that the null horizons under consideration are free 
of caustics. On the other hand, we do not require the horizons 
to be geodesically complete, so they may be truncated before a 
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caustic is reached. We leave the issue of zero modes in lightfront 
quantization [12,13] outside the scope of the paper. For simplic-
ity, we pretend that our quantum field theory contains only scalar 
fields, with a standard kinetic term and arbitrary potential. For 
interacting theories, the assumption of a standard kinetic term 
should be taken with caution, even though it is commonplace in 
the QCD lightfront quantization literature. The associated subtleties 
will be briefly discussed in Appendix A.

2. Operator algebra

The phase space of a field ϕ on a spacelike or null hypersurface 
� consists of the field’s value and normal derivative, with sym-
plectic form:

�(δϕ1, δϕ2) =
∫
�

d3x
(
δϕ1 Sμ∂μδϕ2 − (1 ↔ 2)

)
, (1)

where Sμ is the densitized normal to �. On a null horizon, Sμ is 
the area current, pointing along the horizon’s constituent lightrays. 
A key feature of the null case is that the normal Sμ is also tangent
to the horizon; therefore, the values of ϕ on � determine also 
Sμ∂μϕ , and thus span the entire phase space. In this case, the 
symplectic form (1) becomes:

�(δϕ1, δϕ2) =
∫
�

d2x du
(
δϕ1

√
γ (u, x)∂uδϕ2 − (1 ↔ 2)

)
. (2)

Here, x are 2d coordinates labeling the lightrays, u is a null coor-
dinate along each ray, and √γ is the area density of the 2d metric 
in the x directions. If we now define a rescaled field φ̂ by:

φ̂(u, x) ≡ 4
√

γ (u, x) ϕ̂(u, x), (3)

the symplectic form (2) becomes:

�(δφ1, δφ2) =
∫
�

d2x du (δφ1∂uδφ2 − (1 ↔ 2)) . (4)

On horizons where the metric is constant in u, the rescal-
ing (3) becomes trivial; this case was studied in [14]. In general, 
the rescaling is important as it absorbs the dependence on the 
metric into the definition of the field φ, thus rendering the sym-
plectic form (4) independent of γ . Since the symplectic form, as a 
functional of the field variations, is independent of the metric, we 
can import some well-known flat results. In particular, the com-
mutators, obtained by quantizing the Poisson brackets found by 
inverting the symplectic form (4), can be written as:

[
φ̂(u, x), φ̂(u′, x′)

]
= i

4
δ(2)(x, x′) sign(u′ − u). (5)

Note that, since they are causally separated, fields on the same 
lightray do not commute. The expressions (3)–(5) (with additional 
factors) have appeared in the Poisson brackets [15] for null initial 
data in General Relativity.

We define creation and annihilation operators by Fourier-
transforming φ(u, x) with respect to the null “time” u:

â(ω, x) = √
2ω

∞∫
−∞

du eiωuφ̂(u, x); (6)

â†(ω, x) = √
2ω

∞∫
−∞

du e−iωuφ̂(u, x). (7)

Using (5), we see that these satisfy the appropriate commutation 
relations:[
â(ω, x), â†(ω′, x′)

]
= 2πδ(ω − ω′) δ(2)(x, x′);

[
â(ω, x), â(ω′, x′)

] =
[
â†(ω, x), â†(ω′, x′)

]
= 0. (8)

Equations (5) and (8) giving the commutators of the field φ and 
its Fourier modes are the same as one would obtain for ϕ if the 
horizon was flat. So, while φ has simple commutation relations, 
the corresponding relations for ϕ will in general be more compli-
cated.

The operators (6)–(7) can be used in the standard way to con-
struct e.g. vacuum or thermal states with respect to the “time 
translation” generator i∂u . All of the above is independent of the 
field’s mass and dynamics as encoded in its potential, up to issues 
with loop corrections that will be discussed in Appendix A.

3. De Sitter horizon

As an example, consider a cosmological horizon in de Sitter 
space. We define de Sitter space as the hyperboloid vμvμ = 1
within R1,4, invariant under the isometry group O (4, 1). The hori-
zon is a 2-sphere of lightrays defined by �μvμ = 0, where �μ =
(1, 1, �0) is a null vector in R1,4. The horizon’s points can be coor-
dinatized in R1,4 as:

vμ = (u, u, �n). (9)

Here, the unit 3d vector �n plays the role of the lightray label x, 
while u is an affine null time along the rays.

The horizon creation and annihilation operators (6)–(7) have a 
simple meaning in terms of the Poincaré coordinates (η, �y), which 
span the cosmological patch to the horizon’s future. These are re-
lated to the 4 + 1d radius-vector vμ through:

vμ = − 1

η

(
y2 − η2 + 1

2
,

y2 − η2 − 1

2
, �y

)
; η < 0. (10)

The metric is given by:

ds2 = dvμdvμ = 1

η2
(−dη2 + dy2). (11)

For momentum modes with respect to �y, the “infinite past” η →
−∞ is a UV limit, due to the warp factor in (11). Suppose now 
that our field theory is well-defined in the UV, by means of a con-
formal fixed point. Then, although the metric is only conformally
flat, one can define a Minkowski vacuum at η → −∞ (noting that 
any curvature corrections from the conformal transformation are 
irrelevant in the UV limit). This will be the Bunch–Davies vacuum 
of the full theory in de Sitter space.

Now, the horizon (9) can be expressed in the Poincaré coordi-
nates (10) as a particular form of the η → −∞ limit:

�y = (−η + u)�n; η → −∞. (12)

In this limit, the time translation ∂η becomes the null transla-
tion ∂u . We conclude that the vacuum annihilated by the hori-
zon operators (6) is the Minkowski vacuum at η → −∞, i.e. the 
Bunch–Davies vacuum.

Note further that spatial translations �y → �y+δ�y of the Poincaré
coordinates act on the horizon as an �n-dependent shift u → u +
�n · δ�y along the lightrays. From here, it’s easy to see that the cre-
ation operators â†(ω, �n) from (7) create particles with spatial momen-
tum �p = ω�n in Poincaré coordinates. This relates the horizon Fock 
space to the standard cosmological basis of comoving momenta.
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