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The issue of Lorentz fine-tuning in effective theories containing higher-order operators is studied. To 
this end, we focus on the Myers–Pospelov extension of QED with dimension-five operators in the photon 
sector and standard fermions. We compute the fermion self-energy at one-loop order considering its even 
and odd CPT contributions. In the even sector we find small radiative corrections to the usual parameters 
of QED which also turn to be finite. In the odd sector the axial operator is shown to contain unsuppressed 
effects of Lorentz violation leading to a possible fine-tuning. We use dimensional regularization to deal 
with the divergencies and a generic preferred four-vector. Taking the first steps in the renormalization 
procedure for Lorentz violating theories we arrive to acceptable small corrections allowing to set the 
bound ξ < 6 × 10−3.
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1. Introduction

New physics from the Planck scale has been hypothesized to 
show up at low energies as small violations of Lorentz symme-
try [1]. This possibility has been supported by the idea that space-
time may change drastically at high energies giving place to some 
level or discreteness or spacetime foam. In the language of ef-
fective theory the Lorentz symmetry departures are implemented 
with Planck mass suppressed operators in the Lagrangians. The ef-
fective approach has been shown to be extremely successful in 
order to contrast the possible Lorentz and CPT symmetry viola-
tions with experiments. A great part of these searches have been 
given within the framework of the standard model extension with 
several bounds on Lorentz symmetry violation provided [2–4]. In 
general most of the studies on Lorentz symmetry violation have 
been performed with operators of mass dimension d ≤ 4 [5]. In 
part because the higher-order theories present some problems in 
their quantization [6]. However, in the last years these operators 
have received more attention and several bounds have been put 
forward [7–11]. Moreover, a generalization has been constructed 
to include non-minimal terms in the effective framework of the 
standard model extension [12].
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Many years ago Lee and Wick [13] and Cutkosky [14] studied 
the unitarity of higher-order theories using the formalism of in-
definite metrics in Hilbert space. They succeeded to prove that 
unitarity can be conserved in some higher-order models by re-
stricting the space of asymptotic states. This has stimulated the 
construction of several higher-order models beyond the standard 
model [15]. One example is the Myers and Pospelov model based 
on dimension-five operators describing possible effects of quan-
tum gravity [16,17]. In the model the Lorentz symmetry violation 
is characterized by a preferred four-vector n [18,19]. The preferred 
four-vector may be thought to come from a spontaneous symmetry 
breaking in an underlying fundamental theory. One of the original 
motivations to incorporate such terms was to produce cubic mod-
ifications in the dispersion relation, although an exact calculation 
yields a more complicated structure usually with the Gramian of 
the two vectors k and n involved. The Myers and Pospelov model 
has become an important arena to study higher-order effects of 
Lorentz-invariance violation [8,20–22].

This work aims to contribute to the discussion on the fine-
tuning problem due to Lorentz symmetry violation [23], in partic-
ular when higher-order operators are present. There are different 
approaches to the subject, for example using the ingredient of 
discreteness [24] or supersymmetry [25]. For renormalizable op-
erators, including higher space derivatives, large Lorentz violations 
can or not appear depending on the model and regularization 

http://dx.doi.org/10.1016/j.physletb.2015.05.006
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2015.05.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:creyes@ubiobio.cl
http://dx.doi.org/10.1016/j.physletb.2015.05.006
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.05.006&domain=pdf


C.M. Reyes et al. / Physics Letters B 746 (2015) 190–193 191

scheme [26]. However, higher-order operators are good candidates 
to produce strong Lorentz violations via induced lower dimensional 
operators [27]. Some attempts to deal with the fine tuning prob-
lem considers modifications in the tensor contraction with a given 
Feynman diagram [16] or just restrict attention to higher-order 
corrections [28]. However in both cases the problem comes back 
at higher-order loops [29]. Here we analyze higher-order Lorentz 
violation by explicitly computing the radiative corrections in the 
Myers and Pospelov extension of QED. We use dimensional reg-
ularization which eventually preserves unitarity, thus extending 
some early treatments [18,20].

2. The QED extension with dimension-5 operators

The Myers–Pospelov Lagrangian extension of QED with modifi-
cations in the photon sector can be written as [16]

L = ψ̄(γ μ∂μ − m)ψ − 1

4
F μν Fμν

− ξ

2mPl
nμεμνλσ Aν(n · ∂)2 Fλσ , (1)

where mPl is the Planck mass, ξ a dimensionless coupling param-
eter and n is a four-vector defining a preferred reference frame. 
In addition we introduce the gauge fixing Lagrangian term, LG.F =
−B(x)(n · A), where B(x) is an auxiliary field.

The field equations for Aμ and B derived from the Lagrangian 
L +LG.F read,

∂μF μν + gεναλσ nα(n · ∂)2 Fλσ = Bnν , (2)

n · A = 0 . (3)

where g = ξ
mPl

. Contracting Eq. (2) with ∂ν gives (∂ ·n)B = 0, which 
allows us to set B = 0. In the same way, the contraction of Eq. (2)
with nν in momentum space leads to k · A = 0.

We can choose the polarization vectors e(a)
μ with a = 1, 2 to lie 

on the orthogonal hyperplane defined by k and n [30], satisfying 
e(a) · e(b) = −δab and

−
∑

a

(e(a) ⊗ e(a))μν = −(e(1)
μ e(1)

ν + e(2)
μ e(2)

ν ) ≡ eμν , (4)

∑
a

(e(a) ∧ e(a))μν = e(1)
μ e(2)

ν − e(2)
μ e(1)

ν ≡ εμν . (5)

In particular, one can choose

eμν = ημν − (n · k)

D
(nμkν + nνkμ) + k2

D
nμnν + n2

D
kμkν , (6)

εμν = 1√
D

εμαρνnαkρ , (7)

with D = (n · k)2 − n2k2. With these elements the photon propaga-
tor can be written as

�μν(k) = −
∑

λ=±1

P (λ)
μν(k)

k2 + 2gλ(k · n)2
√

D
, (8)

where P (λ)
μν = 1

2 (eμν + iλεμν) is an orthogonal projector.

3. The fermion self-energy

We compute the fermion self-energy with the modifications in-
troduced only via the Lorentz violating photon propagator (8). The 
one loop-order approximation to the fermion self-energy is

�2(p) = ie2
∫

d4k

(2π)4
γ μ

(
/p − /k + m

(p − k)2 − m2

)
γ ν�μν(k) , (9)

which can be decomposed into a CPT even part

�
(+)
2 (p) = − ie2

2

∑
λ

∫
d4k

(2π)4
γ μ

(
/p − /k + m

(p − k)2 − m2

)

× γ νeμν

k2 + 2gλ(k · n)2
√

D
, (10)

and a CPT odd part

�
(−)
2 (p) = − ie2

2

∑
λ

∫
d4k

(2π)4
γ μ

(
/p − /k + m

(p − k)2 − m2

)

× γ ν iλεμν

k2 + 2gλ(k · n)2
√

D
. (11)

Next we expand in powers of external momenta obtaining

�2(p) = �2(0) + pα

(
∂�2(p)

∂ pα

)
p=0

+ �g , (12)

where �g are convergent terms in the limit g → 0 depending on 
quadratic and higher powers of p.

In order to compute the corrections our strategy will be i) per-
form a Wick rotation and extend analytically any four vector to 
the Euclidean xE = (ix0, 	x), and ii) use dimensional regularization 
in spherical coordinates for the divergent integrals. To begin, we 
are interested on the first two even contributions in Eqs. (10) and 
(12), which are

�
(+)
2 (0) = − ie2

2
m

∑
λ

∫
d4k

(2π)4

1

(k2 − m2)

γ μeμνγ
ν

k2 + 2gλ(k · n)2
√

D
,

(13)

∂�
(+)
2 (0)

∂ pα
= − ie2

2

∑
λ

∫
d4k

(2π)4

[
1

(k2 − m2)
− 2k2

α

(k2 − m2)2

]

× γ μγ αγ νeμν

k2 + 2gλ(k · n)2
√

D
. (14)

Applying our strategy leads to

�
(+)
2 (0) = e2m

∑
λ

∫
d4kE

(2π)4

1

(k2
E + m2)(k2

E − 2gλ(kE · nE )2
√

D E )
,

∂�
(+)
2 (0)

∂ pα
= −e2

2
(nνnα − n2

E

2
ηα

ν )γ ν

×
∑
λ

∫
d4kE

(2π)4

[
1

(k2
E + m2)

− k2
E

2(k2
E + m2)2

]

× k2
E

D E

1

(k2
E − 2gλ(kE · nE)2

√
D E)

, (15)

where we have used γ μeμνγ
ν = 2 and D E = (nE ·kE )2 −k2

En2
E . The 

calculation produces

�
(+)
2 (0) = e2m

8π2

(
1 − ln

(
g2m2(n2

E)3

16

))
,

pα
∂�

(+)
2 (0)

∂ pα
= − e2

16π2

(
1

2
/p − /n(n · p)

n2
E

)

×
(

1 + ln

(
g2m2(n2

E)3

16

))
. (16)

Let us emphasize that the renormalization in the even sector in-
volves small corrections without any possible fine-tuning. Also, the 
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