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Neutrino oscillations reveal several small parameters, namely, θ13, the solar mass splitting vis-à-vis the 
atmospheric one, and the deviation of θ23 from maximal mixing. Can these small quantities all be traced 
to a single source and, if so, how could that be tested? Here a see-saw model for neutrino masses is 
presented wherein a dominant term generates the atmospheric mass splitting with maximal mixing in 
this sector, keeping θ13 = 0 and zero solar splitting. A Type-I see-saw perturbative contribution results in 
non-zero values of θ13, �m2

solar , θ12, as well as allows θ23 to deviate from π/4 in consistency with the 
data while interrelating them all. CP-violation is a natural consequence and is large (δ ∼ π/2, 3π/2) for 
inverted mass ordering. The model will be tested as precision on the neutrino parameters is sharpened.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Information on neutrino mass and mixing have been steadily 
emerging from oscillation experiments. Among them the angle1

θ13 is small (sin θ13 ∼ 0.1) [1] while global fits to the solar, atmo-
spheric, accelerator, and reactor neutrino oscillation data indicate 
that θ23 is near maximal (∼ π/4) [2,3]. On the other hand, the 
solar mass square difference is two orders smaller than the atmo-
spheric one. These mixing parameters and the mass ordering are 
essential inputs for identifying viable models for neutrino masses.

A natural choice could be to take the mixing angles to be ini-
tially either π/4 (θ23) or zero (θ13, θ12) and the solar splitting 
absent. In this spirit, here a proposal is put forward under which 
the atmospheric mass splitting and maximal mixing in this sec-
tor arise from a zero-order mass matrix while the smaller solar 
mass splitting and realistic θ13 and θ23 are generated by a Type-I
see-saw [4] which acts as a perturbation. θ12 also arises out of the 
same perturbation and as a consequence of degeneracy is not con-
strained to be small. Attempts to generate some of the neutrino 
parameters by perturbation theory are not new [5,6], but to our 
knowledge there is no work in the literature that indicates that all
the small parameters could have the same perturbative origin and 
agree with the current data.

The unperturbed neutrino mass matrix in the mass basis is 
M0 = diag{m(0)

1 , m(0)
1 , m(0)

3 } with the mixing matrix of the form
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1 For the lepton mixing matrix the standard PMNS form is used.
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Here �m2
atm = (m(0)

3 )2 − (m(0)
1 )2. By suitably choosing the Majorana 

phases the masses m(0)
1 , m(0)

3 are taken to be real and positive. The 
columns of U 0 are the unperturbed flavour eigenstates.2 As stated, 
�m2

solar = 0 and θ13 = 0. Since the first two states are degenerate 
in mass, one can also take θ12 = 0. It is possible to generate this 
mass matrix from a Type-II see-saw.

In the flavour basis the mass matrix is (M0)flavour = U 0M0U 0T

which in terms of m± = m(0)
3 ± m(0)

1 is
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The perturbation is obtained by a Type-I see-saw. To reduce the 
number of independent parameters, in the flavour basis the Dirac 
mass term is taken to be proportional to the identity, i.e.,

MD = mD I . (3)

2 In the flavour basis the charged lepton mass matrix is diagonal.
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In this basis, in the interest of minimality the right-handed neu-
trino Majorana mass matrix is taken with only two non-zero com-
plex entries.

Mflavour
R = mR

( 0 xe−iφ1 0
xe−iφ1 0 0

0 0 ye−iφ2

)
, (4)

where x, y are dimensionless constants of O(1). No generality is 
lost by keeping the Dirac mass real.

As a warm-up consider first the real case, i.e., φ1 = 0 or π , 
φ2 = 0 or π . For notational convenience in the following the phase 
factors are not displayed; instead x (y) is taken as positive or neg-
ative depending on whether φ1 (φ2) is 0 or π . Negative x and 
y offer interesting variants which are stressed at the appropriate 
points.

The Type-I see-saw contribution in the mass basis is:

M ′mass = U 0T
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The effect on the solar sector is governed by the submatrix of 
M ′mass in the subspace of the two degenerate states,

M ′mass
2×2 = m2

D√
2 xymR

(
0 y
y x/

√
2

)
. (6)

To first order in the perturbation:

tan 2θ12 = 2
√

2
( y

x

)
. (7)

For y/x = 1 one obtains the tribimaximal mixing value of θ12
which, though allowed by the data3 at 3σ , is beyond the 1σ re-
gion. Since for the entire range of θ12 one has tan 2θ12 > 0, x and 
y must be chosen of the same sign. Therefore, either φ1 = 0 = φ2
or φ1 = π = φ2. From the global fits to the experimental results 
one finds:

0.682 <
y

x
< 1.075 at 3σ . (8)

Further, from Eq. (6),
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To first order in the perturbation the corrected wave function 
|ψ3〉 is:
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where

κ ≡ m2
D√

2 xmRm− . (11)

For positive x the sign of κ is fixed by that of m− . Since by con-
vention all the mixing angles θi j are in the first quadrant, from 
Eq. (10) one must identify:

sin θ13 cos δ = κ = m2
D√

2 xmRm− , (12)

3 We use the 3σ ranges 7.03 ≤ �m2
21/10−5 eV2 ≤ 8.03 and 31.30◦ ≤ θ12 ≤

35.90◦ [2].

Fig. 1. The blue dot-dashed box is the global-fit 3σ allowed range of sinθ13 and 
tan 2θ12. The best-fit point is shown as a black dot. The red dotted curve is from 
Eq. (13) with m0 = 2.5 meV when the best-fit values of the two mass-splittings are 
used. The portion below the green solid (dashed) straight line is excluded by θ23 at 
3σ – Eq. (17) – for the first (second) octant. In case of inverted ordering no solution 
of Eq. (13) is allowed for real MR . (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

where for x > 0 the PMNS phase δ = 0 for normal mass ordering 
(NO) and δ = π for inverted mass ordering (IO). Needless to say, 
both these cases are CP conserving. If x is negative then NO (IO) 
would correspond to δ = π (0).

An immediate consequence of Eqs. (12), (7), and (9) is

�m2
solar = sgn(x) m−m(0)

1
4 sin θ13 cos δ

sin 2θ12
, (13)

which exhibits how the solar sector and θ13 are intertwined. The 
positive sign of �m2

solar , preferred by the data, is trivially verified 
since sgn(x) m− sin θ13 cos δ > 0 from Eq. (12). However, Eq. (13)
excludes inverted ordering. Once the neutrino mass square split-
tings, θ12, and θ13 are chosen, Eq. (13) determines the lightest neu-

trino mass, m0. Defining z = m−m(0)
1 /�m2

atm and m0/

√
|�m2

atm| =
tan ξ , one has

z = sin ξ/(1 + sin ξ) (normal ordering),

z = 1/(1 + sin ξ) (inverted ordering) . (14)

It is seen that 0 ≤ z ≤ 1/2 for NO and 1/2 ≤ z ≤ 1 for IO, with z →
1/2 corresponding to quasidegeneracy, i.e., m0 → large, in both 
cases. From Eq. (13)
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(
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)(
sin 2θ12

4 sin θ13| cos δ|
)

, (15)

with | cos δ| = 1 for real MR . As shown below, the allowed ranges 
of the oscillation parameters imply z ∼ 10−2 and so inverted mass 
ordering is disallowed.

From Eq. (10) one further finds:

tan θ23 ≡ tan(π/4 − ω) =
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2
x
y
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2
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y

, (16)

where, using Eqs. (7) and (12),

tanω = 2 sin θ13 cos δ

tan 2θ12
. (17)

θ23 will be in the first (second) octant, i.e., the sign of ω will be 
positive (negative) if δ = 0 (π). Recall, this corresponds to x > 0
(x < 0).

In Fig. 1 the global-fit 3σ range of sin θ13 and tan 2θ12 is shown 
as the blue dot-dashed box with the best-fit value indicated by 
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