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We compute the decoupling constant ζm relating light quark masses of effective nl-flavour QCD to
(nl +1)-flavour QCD to four-loop order. Immediate applications are the evaluation of the MS charm quark 
mass with five active flavours and the bottom quark mass at the scale of the top quark or even at GUT 
scales. With the help of a low-energy theorem ζm can be used to obtain the effective coupling of a Higgs 
boson to light quarks with five-loop accuracy. We briefly discuss the influence on �(H → bb̄).
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1. Introduction and notation

Perturbative calculations in QCD are quite advanced and have 
reached, at least for some observables, the four and even five-
loop level (see Refs. [1,2] for a recent review). This concerns in 
particular the renormalization group functions which have been 
computed at four loops in Refs. [3–7]. The first five-loop result has 
been obtained recently in Ref. [8] where the quark mass anoma-
lous dimension has been computed to this order.

In order to consistently relate the quark masses and strong cou-
pling constant evaluated at different energy scales, both the renor-
malization group functions and also the decoupling relations have 
to be available. The latter take care of integrating out heavy quark 
fields. In fact, N-loop running goes along with (N − 1)-loop de-
coupling. Thus, besides the five-loop anomalous dimensions also 
the four-loop decoupling relations are needed. In Refs. [9,10] a 
first step has been undertaken in this direction and the four-
loop decoupling constant for αs has been computed (although the 
five-loop beta function is not yet available). In this paper we com-
plement the result by computing the four-loop corrections to the 
decoupling constant for the light quark masses, which supplements 
the five-loop result for γm [8].

In Ref. [11] a formalism has been derived which allows for an 
effective calculation of the N-loop decoupling constants with the 
help of N-loop vacuum integrals. In the following we present the 
formulae which are relevant for the calculation of the quark mass 
decoupling constant.
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The bare decoupling constant ζ 0
m is defined via the relation

m0′
q = ζ 0

mm0
q , (1)

where m0
q and m0′

q are the bare quark mass parameters in the 
full n f - and effective nl (≡ n f − 1)-flavour theory. Introducing the 
renormalization constants in both theories leads to the equation

m′
q(μ) = Zm

Z ′
m

ζ 0
mmq(μ) = ζmmq(μ), (2)

which relates finite quantities and defines ζm . Note that primed 
quantities depend on α(nl)

s and non-primed quantities on α(n f )
s . 

Four-loop results for Zm and Z ′
m can be found in Refs. [3,4,7] and 

ζ 0
m can be computed with the help of

ζ 0
m = 1 − �0h

S (0)

1 + �0h
V (0)

, (3)

where �0h
S (0) and �0h

V (0) are the scalar and vector parts of the 
light-quark self energy evaluated at zero external momentum. The 
superscript “h” reminds that one has to consider only the hard part 
which involves at least one propagator of the heavy quark.

In the next section we discuss the calculation of ζ 0
m and its 

renormalization to arrive at ζm . Section 3 applies a low-energy 
theorem to derive, from the four-loop result of ζm , the effective 
Higgs-fermion coupling constant to five-loop order. We summarize 
our findings in Section 4.

2. Decoupling for light quark masses

In this section, we compute the decoupling constant ζ 0
m and 

combine it with the four-loop result for Zm to obtain the finite 
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Fig. 1. Sample Feynman diagrams contributing to the hard part of the light-quark 
propagator up to four loops. Solid and curly lines denote quarks and gluons, respec-
tively. At least one of the closed fermion loops needs to be the heavy quark.

quantity ζm . The computation of ζ 0
m requires the knowledge of 

the hard contribution to the scalar and vector part of the light-
quark propagator, see Fig. 1 for sample Feynman diagrams. The 
first non-vanishing contribution arises at two loops where one di-
agram contributes. At three-loop order there are 25 and at four 
loops we have 765 Feynman diagrams.

The perturbative expansion of Eq. (3) to four loops leads to

ζ 0
m = 1 − �0h

S (0) − �0h
V (0) + �0h

V (0)
[
�0h

S (0) + �0h
V (0)

]
+ . . . ,

(4)

where in the last term on the right-hand side only two-loop ex-
pressions for �0h

S (0) and �0h
V (0) have to be inserted.

We generate the Feynman diagrams with the help of QGRAF
[12]. FORM [13,14] code is then generated by passing the out-
put via q2e [15,16], which transforms Feynman diagrams into 
Feynman amplitudes, to exp [15,16]. After processing the latter 
one obtains the result as a linear combination of scalar functions 
which have a one-to-one relation to the underlying topology of 
the diagram. The functions contain the exponents of the involved 
propagators as arguments. At this point one has a large number 
of different functions. Thus, in the next step one passes them to 
a program which implements the Laporta algorithm [17] and per-
forms a reduction to a small number of so-called master integrals. 
We use, for the latter step, the C++ program FIRE [18]. Our four-
loop result is expressed in terms of 13 master integrals which we 
take from Ref. [19] (see also [20–22] and references therein). All 
ε coefficients are known analytically in the literature except the 
ε3 term of integral J6,2 (in the notation from Ref. [19]) which has 
been provided from [23].

Note that for our calculation we have used a general gauge pa-
rameter ξ of the gluon propagator. At four loops, in intermediate 
steps terms up to order ξ6 are present, however, in the final result 
for ζ 0

m all ξ terms drop out. The last term on the right-hand side of 
Eq. (4) is separately ξ -independent since at two loops �0h

S (0) and 
�0h

V (0) are individually ξ -independent. The results up to three-
loop order have been checked with the help of MATAD [24] which 
avoids the use of the program FIRE since it implements the ex-
plicit solution of the recurrence relations.

To obtain ζ 0
m we have to renormalize αs and the heavy quark 

mass mh to two-loop order. The corresponding MS counterterms 
are well-known (see, e.g. Ref. [7]). ζ 0

m still contains poles in ε
which are removed by multiplying with the factor Zm/Z ′

m (see, 
Eq. (2)) which is needed to four-loop order [3,4,7]. Note that Z ′

m
depends on the strong coupling constant of the effective theory, 
α

(nl)
s , whereas Zm and ζ 0

m are expressed in terms of α(nl+1)
s . In or-

der to achieve the cancellation of the ε poles the same coupling 
constant has to be used in all three quantities. We have decided 
to replace α(nl)

s in favour of α(nl+1)
s which is done using the corre-

sponding decoupling constant ζαs up three-loop order [11]. Note, 
however, that higher order terms in ε are also needed since ζαs

gets multiplied by poles present in Z ′
m . Up to two-loop order they 

can be found in Refs. [25,26]; the three-loop terms of order ε can 
be extracted from Refs. [9,10].

Our final result for the decoupling constant parametrized in 
terms of the MS heavy quark mass, mh ≡ mh(μ), reads

ζ MS
m = 1 +

(
α

(n f )
s

π

)2 (
89

432
− 5

36
ln

μ2

m2
h

+ 1

12
ln2 μ2

m2
h

)

+
(

α
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s

π
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9
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72
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9
a4
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6
ζ(3)

)
ln
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h
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216
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h

+ nl
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11664
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27
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ln
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h
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108
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h
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π
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