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We present a common chiral power-counting scheme for vector, axial-vector, scalar, and pseudoscalar 
WIMP–nucleon interactions, and derive all one- and two-body currents up to third order in the 
chiral expansion. Matching our amplitudes to non-relativistic effective field theory, we find that chiral 
symmetry predicts a hierarchy amongst the non-relativistic operators. Moreover, we identify interaction 
channels where two-body currents that previously have not been accounted for become relevant.
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1. Introduction

Elucidating the nature of dark matter is one of the most press-
ing challenges in contemporary particle physics and astrophysics. 
Still, one of the dominant paradigms rests on a weakly-interacting 
massive particle (WIMP), such as the neutralino in supersymmetric 
extensions of the standard model (SM). A WIMP can be searched 
for at colliders, in annihilation signals, or in direct-detection exper-
iments, where the recoil energy deposited when the WIMP scatters 
off nuclei is measured. Recent years have witnessed an impres-
sive increase in sensitivity, e.g., from XENON100 [1], LUX [2], and 
SuperCMDS [3], which will further improve dramatically with the 
advent of ton-scale detectors, XENON1T [4] and LZ [5]. In the ab-
sence of a signal, direct-detection experiments provide more and 
more stringent constraints on the parameter space of WIMP candi-
dates. To derive these constraints and to interpret a future signal, 
it is mandatory that the nucleon matrix elements and the nuclear 
structure factors, which are required when transitioning from the 
SM to the nucleon to the nucleus level, be calculated systemati-
cally and incorporate what we know about QCD.

Effects at the level of the nucleus can be described by an 
effective field theory (EFT) whose degrees of freedom are non-
relativistic (NR) nucleon and WIMP fields [6,7]. This NREFT has 
been recently used in an analysis of direct-detection experi-
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ments [8]. In this approach, scales related to the spontaneous 
breaking of chiral symmetry of QCD are integrated out, with the 
corresponding effects subsumed into the coefficients of the EFT. In 
the context of nuclear forces, such an EFT is called pionless EFT. To 
derive limits on the WIMP parameter space, information from QCD 
has then to be included in the analysis in a second step.

Alternatively, one can start directly from chiral EFT (ChEFT) 
to incorporate the QCD constraints from chiral symmetry [9–16], 
which makes predictions for the hierarchy among one- and two-
body currents. Based on ChEFT, scalar and axial-vector two-body 
currents were recently considered in [10] and [11,12], respectively. 
Moreover, lattice QCD can be used to constrain the couplings of 
two-body currents [17].

The goal of this Letter is to combine vector, axial-vector, scalar, 
and pseudoscalar interactions in a common chiral power count-
ing, collect all relevant one- and two-body matrix elements, and 
match the result onto NREFT. This combines our knowledge of 
QCD at low energies: the one-body matrix elements correspond to 
the standard decomposition into form factors, while the two-body 
scalar [9,10], vector [18–20], and axial-vector [15,21] currents have 
been calculated as well, the vector current even at one-loop order. 
Here, we combine these results for their application in direct de-
tection, extending the axial-vector two-body currents to finite mo-
mentum transfer and generalizing to the three-flavor case where 
appropriate. By matching to the NREFT, we find that the chiral 
symmetry of QCD predicts a hierarchy among the different oper-
ators and that two-body currents can be as important as one-body 
currents in some channels.
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2. Effective Lagrangian and kinematics

We start from the following dimension-6 and -7 effective La-
grangian for the interaction of the WIMP χ , assumed to be a SM 
singlet, with the SM fields [22]

Lχ = 1

�3

∑
q

[
CSS

q χ̄χ mqq̄q + CPS
q χ̄ iγ5χ mqq̄q

+ CSP
q χ̄χ mqq̄iγ5q + CPP

q χ̄ iγ5χ mqq̄iγ5q
]

+ 1

�2

∑
q

[
CVV

q χ̄γ μχ q̄γμq + CAV
q χ̄γ μγ5χ q̄γμq

+ CVA
q χ̄γ μχ q̄γμγ5q + CAA

q χ̄γ μγ5χ q̄γμγ5q
]

+ 1

�2

∑
q

[
CTT

q χ̄σμνχ q̄σμνq + C̃ TT
q χ̄σμν iγ5χ q̄σμνq

]

+ 1

�3

[
C S

g χ̄χ αsGa
μνGμν

a + C P
g χ̄ iγ5χ αsGa

μνGμν
a

+ C̃ S
g χ̄χ αsGa

μν G̃μν
a + C̃ P

g χ̄ iγ5χ αsGa
μν G̃μν

a

]
, (1)

where the Wilson coefficients Ci parameterize the effect of new 
physics associated with the scale � (organizing the interactions 
in this way assumes � to be much larger than the typical QCD 
scale of 1 GeV). To render the scalar and pseudoscalar matrix el-
ements renormalization-scale invariant we included explicitly the 
quark masses mq in the definition of the respective operators. We 
further assumed χ to be a Dirac fermion (in the Majorana case, 
CVV

q = CVA
q = CTT

q = 0), and defined the dual field strength tensor as

G̃μν
a = 1

2
εμνλσ Ga

λσ , (2)

with sign convention ε0123 = +1. Compared to the operator basis 
used in [23] we do not include the dimension-8 operators related 
to the traceless part of the QCD energy–momentum tensor. As 
shown in [23], these operators become relevant for heavy WIMPs 
and contribute to spin-independent interactions, decreasing signif-
icantly the single-nucleon contribution. Finally, we will ignore the 
tensor operators in (1) and concentrate on the chiral predictions 
for the V , A, S , P channels.

The kinematics for the WIMP–nucleon scattering process are 
taken as

N(p) + χ(k) → N(p′) + χ(k′), (3)

the momentum transfer is defined as

q = k′ − k = p − p′, q2 = t, (4)

and the pion, η, nucleon, nucleus, and WIMP masses will be de-
noted by Mπ , Mη , mN , mA , and mχ , respectively (Dirac spinors are 
normalized to 1). We will also need

P = p + p′, K = k + k′. (5)

The cross section differential with respect to momentum trans-
fer for the elastic WIMP–nucleus scattering process in the labora-
tory frame can be expressed as

dσ

dq2
= 1

8π v2(2 J + 1)

∑
spins

|MNR|2 +O
(
q0), (6)

with nucleus spin J , WIMP velocity v , and NR amplitude MNR
defined as

M = 2mA2mχMNR +O
(
q2), (7)

where M is the relativistic scattering amplitude. In the Majorana 
case, (6) receives an additional factor of 4.

3. Chiral power counting

We use the standard chiral power counting [24,25]

∂ = O
(

p
)
, mq = O

(
p2), aμ, vμ = O(p), (8)

with axial-vector and vector sources aμ and vμ . The velocity dis-
tribution in dark matter halo models indeed suggests to count the 
momentum transfer q � Mπ as O(p) [10]. In the baryon sector we 
depart from the standard counting in chiral perturbation theory 
(ChPT) and adopt the more conventional ChEFT assumption (see, 
e.g., [26–28]) for the scaling of relativistic corrections

∂

mN
= O

(
p2). (9)

This counting is appropriate for a break-down scale around 
500 MeV. As far as the WIMP is concerned, a chiral counting is 
only required for the NR expansion of the spinors. We assume the 
same counting as in the nucleon case, but display the correspond-
ing additional powers explicitly. If mχ � mN , the suppression will 
be more pronounced, for Mπ � mχ � mN the counting should be 
adapted, and for even smaller mχ the naive counting breaks down.

For most of the channels it suffices to consider the leading-
order Lagrangian to determine at which chiral order a given con-
tribution starts. For the one-body matrix elements higher orders 
are subsumed into the nucleon form factors, which are obtained 
by their chiral expansion or could be taken from phenomenology. 
In this work, we consider all contributions up to O(p3). Since the 
leading two-body terms start at O(p2), this leaves the possibility 
that the next-to-leading-order (NLO) pion–nucleon Lagrangian in-
volving the low-energy constants ci [29] could be required, and 
this is indeed the case for the spatial component of the axial-
vector current [11,12] (indicated by “2b NLO” in Table 1). In the 
same channel, NN contact terms di [30] enter. We define both ci
and di in the conventions of [21] (with dimensionless c6 and c7).

As a preview of our results, the leading chiral orders of one-
and two-body currents for time and space components of the 
axial-vector and vector currents, as well as for the scalar and pseu-
doscalar operators, are listed in Table 1. The suppression by two 
powers (“+2”) originating from the WIMP spinors is displayed sep-
arately. In the following sections, we give results for all one- and 
two-body currents involved in Table 1.

4. Nuclear matrix elements

4.1. Scalar

At zero momentum transfer the scalar couplings of the heavy 
quarks Q = c, b, t can be determined from the trace anomaly of 
the QCD energy–momentum tensor [31]

θμ
μ =

∑
q

mqq̄q + βQCD

2gs
Ga

μνGμν
a , 〈N|θμ

μ|N〉 = mN ,

βQCD

2gs
= −

(
11 − 2Nf

3

)
αs

8π
+O

(
α2

s

)
. (10)

For Nf = 3 active flavors, one obtains

〈N|mQ Q̄ Q |N〉 = − αs

12π
〈N

∣∣Ga
μνGμν

a

∣∣N〉 = mN f N
Q , (11)
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