
Physics Letters B 746 (2015) 121–126

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Nucleon–nucleon resonances at intermediate energies using a complex 

energy formalism

G. Papadimitriou ∗, J.P. Vary

Department of Physics and Astronomy, Iowa State University, Ames, IA 50011-3160, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 March 2015
Received in revised form 20 April 2015
Accepted 26 April 2015
Available online 30 April 2015
Editor: J.-P. Blaizot

We apply our method of complex scaling, valid for a general class of potentials, in a search for nucleon–
nucleon S-matrix poles up to 2 GeV laboratory kinetic energy. We find that the realistic potentials 
JISP16, constructed from inverse scattering, and chiral field theory potentials N3LO and N2LOopt support 
resonances in energy regions well above their fit regions. In some cases these resonances have widths 
that are small when compared with the real part of the S-matrix pole.
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1. Introduction

There is a long-standing interest and considerable recent 
progress in the theoretical characterization of nuclear resonant 
states. A resonant state is fully characterized by its position in 
the energy plane and its width, which determines how fast the 
state will decay. One could in general solve the time-dependent 
Schrödinger equation to study the characteristics of resonant states 
[1–3], which is a demanding computational process. On the other 
hand, the time-independent many-body methods that deal with 
the description of resonant states in nuclei are under develop-
ment and exhibit appealing computational features. These time-
independent methods can be divided into real energy and complex 
energy approaches.

The spectrum of a real nuclear Hamiltonian consists of negative 
and positive energy states. While the negative energy spectrum is 
discrete (bound states), the positive energy spectrum may have 
a richer structure with resonant states among scattering or con-
tinuum states. Hence real-energy approaches require criteria for 
identifying a resonant structure and for assigning a position and 
a width to them.

In the domain of L2 integrable basis expansion methods this is 
usually achieved through L2 stabilization methods [4,5] or meth-
ods that evaluate the real Continuum Level Density (CLD) [6]. The 
CLD usually produces an approximate Breit–Wigner distribution 
in the region of the resonant state whose parameters could be 
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determined by a fit. The CLD method has been successfully ap-
plied to atomic systems [7], nuclear clusters [8] and in mean-field 
approaches for describing quasiparticle resonant states [9].

The name stabilization, arises from the fact that one does not 
need the knowledge of the asymptotic wavefunction in order to 
determine the resonant parameters. On the reaction side, based on 
R-matrix considerations [10–12], and assuming the single channel 
approximation, resonant parameters can be determined by the be-
havior of the phase-shift function of energy δ(E) around the reso-
nant position; in particular the position is defined as the inflection 
point of δ(E) (maximum energy derivative of δ(E)) and the width 
is defined as � = 2

dδ/dE |E=Er , where Er is the inflection point. 
Such formulas where employed recently in microscopic R-matrix 
calculations [13] to extract widths from realistic nucleon–nucleus 
phase-shifts. Though the R-matrix parameterizations have been 
very successful, the formulas become less transparent in the multi-
channel case and when they are applied for the description of 
broad resonances (see discussion in [14]). Furthermore, for broad 
resonances, R-matrix analysis become more dependent on chan-
nel radii and boundary conditions [15]. Finally, combining formulas 
and assumptions from different theories/models for the calculation 
of an observable increases the possibility of uncontrollable errors.

The complex energy formalism serves as a potentially fruitful 
alternative for the characterization of the resonant parameters. It 
has been shown that once the R-matrix, S-matrix and T-matrix are 
analytically continued to the complex energy plane, the extrac-
tion of resonant parameters becomes independent of boundaries 
and radii [16]. Apart from this practical issue, some physical phe-
nomena may have a more natural interpretation once the theory 
is developed in the complex energy plane (e.g. thermo-nuclear 
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reactions [17,18]). In the complex energy formalism, the Gamow 
(resonant) states, i.e. the solutions of the Schrödinger equation 
which satisfy purely outgoing boundary conditions (complex wave 
number k), play a dominant role. It was shown by Berggren [19]
that resonant states, when accompanied by non-resonant contin-
uum states, form a complete set, an important property that gives 
rise to Berggren basis expansion methods either in a Configura-
tion Interaction (CI) framework [20–25], Coupled Cluster frame-
work [26–28] or reaction theory framework [29–35]. Expressing 
the Hamiltonian in such a complex energy, orthonormal non L2

integrable basis, automatically allows its spectrum to support res-
onant and also non-resonant continuum states. In addition, when 
the Berggren basis is used in a reaction framework the detailed 
knowledge of the boundary condition at large distances is not cru-
cial.

The Complex Scaling (CS) method also belongs in the cate-
gory of complex energy formalisms. The Aguilar–Balslev–Combes 
(ABC) theorem [36,37] establishes that once the Hamiltonian co-
ordinates are rotated, the resonant states are independent of the 
rotation and behave asymptotically as bound states. Consequently, 
one could use the technology that has been established for bound 
states in order to describe resonant and scattering phenomena. 
Furthermore, the CS method has been successfully applied in nu-
clear physics [38–44] (see also [45] for an application of CS in a 
deformed nuclear mean-field). We recently showed [46] that this 
method may be applied to the most general cases of non-local nu-
clear potentials.

In this work we apply the CS method to nucleon–nucleon (NN) 
scattering spanning the range from threshold to 2 GeV laboratory 
kinetic energy, which exceeds the fitting range of most NN poten-
tials. We elect to retain non-relativistic kinematics throughout as 
the interactions are derived for a non-relativistic scattering frame-
work. We employ three different realistic NN interactions and we 
find resonant poles at laboratory kinetic energy of about 600 MeV, 
or at about 2.2 GeV in the total center of mass energy. Some of 
these poles have imaginary parts that are much smaller than their 
real parts.

According to the SAID data analysis group [47–49] (see also 
[50]) there exist resonance-like structures, poles of the S-matrix, in 
the 1D2, 3F3 uncoupled and coupled 3P2–3F2 channels. Recently a 
resonant-like structure was also found by the WASA-at-COSY col-
laboration and the SAID analysis group in the 3D3–3G3 coupled 
channel [51,52]. Our CS calculations, in addition to showing reso-
nances in these channels, also reveal resonance-like structures in 
the 3P0 and 3P1 channels. We searched other channels up to and 
including L = 4 without any additional signals of resonance-like 
structures.

The study of dibaryon resonances could shed light on the reac-
tion mechanism and aid in the interpretation of excited nucleonic 
states. It is also valuable to pin down the properties of dibaryon 
resonances as a potential link between Quantum Chromodynam-
ics, hadron models and traditional low energy nuclear physics. In 
the work of [47–49] the resonant-like structures where identified 
by analytically continuing the T-matrix of the available data in 
the complex energy plane. Our goal is to simply identify resonant 
structures with the CS method but not to study in depth the char-
acteristics of the NN scattering at intermediate energies, something 
that would require the use of NN interactions that fit scattering 
data at higher energies, such as CDBonn [53] or AV18 [54]. Such 
in-depth studies would be done relativistically [55] and by treat-
ing properly � and/or Roper resonances degrees of freedom (see 
for example [56]). Furthermore, we will not provide information 
on the possible decay paths that the resonant structures will fol-
low, since we do not consider couplings to inelastic channels such 

as, NN → πd or NN → �N etc. In addition, the interactions we 
use are modeling the short-range (high-energies) NN sector in 
different approaches and are fitted at lower laboratory energies 
(≤ 350 MeV). Hence, we are not aiming at making predictions for 
the existence or absence of broad dibaryonic states. For the same 
reason, we also do not compare resonance parameters produced 
by the different NN interactions. Nevertheless, it is worthwhile to 
discover that the NN interactions we employ, support high energy 
resonant-like states above the � production threshold (1232 MeV). 
The consequences of these resonances for nuclear structure are not 
entirely clear. Simply stated, our goal at this point is to demon-
strate that the CS method locates these resonances using three dif-
ferent realistic NN interactions in the conventional non-relativistic 
framework.

2. Method and results

We apply the CS transformation to our Hamiltonian which con-
sists of the relative kinetic energy T and the realistic NN inter-
action V between the nucleons. The complex rotated Hamiltonian 
has the form:

H(r, θ) = e−2iθ T + V (reiθ ), (1)

where θ is the real CS rotation parameter and nuclear poten-
tial matrix elements are calculated according to [46]. The time-
independent non-relativistic Schrödinger equation then becomes:

H(r, θ)�(r, θ) = E(θ)�(r, θ), (2)

where E is the energy in the Center of Mass (CoM) frame here 
and throughout this work. To be more precise, the rotated non-
Hermitian Hamiltonian operator and the Hermitian one, are related 
through the formula:

H(r, θ) = U (θ)H(r)U (θ)−1, (3)

where U (θ) stands for the non-Unitary CS transformation operator.
In order to solve Eq. (2) we assume that the solution is a linear 

combination of orthonormal Harmonic Oscillator (HO) basis states 
and we solve a complex symmetric Hamiltonian eigenvalue prob-
lem by diagonalization. The spectrum of the Hamiltonian contains 
resonant (bound states, resonances) and non-resonant continuum 
states. According to the ABC theorem, once the resonant state is 
revealed it remains invariant under CS rotations, whereas the non-
resonant continuum states follow an approximate 2θ path in the 
complex energy plane. This is the complex stabilization criterion 
that is used in CS for the identification of the resonant state. In 
practice, due to the truncation of the underlying basis, there is a 
small variation of the resonant position with θ . It is then a conse-
quence of the complex virial theorem [57] that the resonant state 
will be the one that corresponds to the minimal change of the real 
part of the energy with respect to θ . The method is also known 
as θ -trajectory method and it is a common practice in CS applica-
tions (see for example [39,44,58]). We also apply this stabilization 
technique and we check convergence of our results as a function 
of the basis dimension and the variations with the rotation angle.

In Fig. 1 we present the spectrum of the complex scaled Hamil-
tonian for the 3P1 (1−) channel of the neutron-proton (np) system, 
for the JISP16 [59] and the two chiral effective field theory interac-
tions N3LO [60] and N2LOopt [61]. The HO basis was characterized 
by h̄ω = 40 MeV for JISP16 and N2LOopt and by h̄ω = 28 MeV
for N3LO. For the N3LO potential we varied the rotation from 
θ = 0.1 rad to 0.2 rad, for N2LOopt from θ = 0.14 to 0.24 rad 
and for JISP16 from θ = 0.2 to 0.3 rad. The step in the θ dis-
cretization was 0.004 rad. As we start rotating the coordinates and 
momenta of the Hamiltonian, solutions that initially inhabit the 
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