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Cosmological singularities are often discussed by means of a gradient expansion that can also describe, 
during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the 
inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion 
can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. 
It is argued that conventional arguments addressing the preinflationary initial conditions are necessary 
but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The dynamical approach to the cosmological singularity has 
been historically investigated in terms of an expansion in spatial 
gradients of the geometry [1,2] (see also [3]). Denoting with t
the cosmic time coordinate, the gradient expansion in the prox-
imity of the big-bang singularity is formally defined in the limit 
t → 0 where the spatial gradients turn out to be subdominant in 
comparison with the extrinsic curvature. This important observa-
tion implies that close to the singularity the geometry may be 
highly anisotropic but rather homogeneous [1,2]. As soon as an 
inflationary event horizon is formed, the physical rationale for a 
complementary gradient expansion emerges in the limit t → ∞
[4–6]. This idea is applied, for instance, when arguing in favour of 
the so-called cosmic no-hair conjecture stipulating that in conven-
tional inflationary models any finite portion of the event horizon 
gradually loses the memory of an initially imposed anisotropy or 
inhomogeneity so that the metric attains the observed regularity 
regardless of the initial boundary conditions (see Ref. [7] for this 
formulation of the conjecture and also Refs. [8,9] for some other 
early contributions). According to the standard lore, one of the cen-
tral motivations of the whole inflationary paradigm (see e.g. [10,
11]) is to wash out primeval anisotropies in the expansion right 
after the formation of the inflationary event horizon (see, how-
ever, Ref. [12] for a critical perspective on the limitations of the 
no-hair conjecture).

Over a time scale O(t∗) corresponding to the formation of 
the inflationary event horizon, it is therefore plausible to ana-
lyze the space–time geometry not only in terms of a backward 
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gradient expansion (valid for t < t∗) and but also by means of 
a forward expansion (applicable for t > t∗). In both regimes, fol-
lowing the synchronous Adler–Deser–Misner parametrization [13]
the four-dimensional metric tensor can be decomposed as g00 = 1, 
gij = −γi j(�x, t) and g0i = 0. The six independent entries of γi j(�x, t)
can be expanded as:

γi j(�x, t) = a2(t)

[
αi j(�x) + βi j(�x, t) + . . .

]
, (1)

where βi j(�x, t) contains two spatial gradients and the ellipses stand 
for the higher terms in the expansion containing a progressively 
larger (even) number of spatial gradients. Once the inhomogeneous 
seed metric αi j(�x) is assigned, the Einstein equations together with 
the equations of the sources determine βi j(�x, t) whose explicit 
form can always be parametrized in terms of two dimensionless 
functions that shall be conventionally called f (t) and g(t):

β
j

i (�x, t) = f (t)
P j

i (�x)
H2∗

+ g(t)
P(�x)
H2∗

δ
j
i , (2)

where P j
i (�x) = a2(t)R j

i (�x, t) is expressed in units of H2∗ � t−2∗ and 
Ri j(�x, t) denotes the three-dimensional Ricci tensor. The evolution 
of f (t) and g(t) depends, in its turn, on the zeroth-order solu-
tion. If the expansion of Eqs. (1) and (2) can be safely applied, 
the Universe is already quasi-homogeneous in a time interval cen-
tred around t∗ and this will be our first assumption on the process 
describing the formation of the event horizon. Secondly we shall 
posit that, for t < t∗ , the zeroth-order solution expands in a decel-
erated manner while it inflates for t > t∗: roughly speaking this 
assumption implies that t∗ can be identified with the protoin-
flationary boundary. We shall finally admit that the zeroth-order 
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evolution of the extrinsic curvature is continuous and monotonic: 
this last assumption can be relaxed but it is nonetheless realized 
in the explicit toy examples illustrated hereunder. Are the three 
aforementioned assumptions sufficient to guarantee that the spa-
tial gradients of the geometry are exponentially suppressed for 
t � t∗? Are they compatible with the asymptotic suppression of 
the spatial gradients during the quasi-de Sitter stage? The two 
previous questions can be approached within a uniform gradient 
expansion holding across the protoinflationary boundary.

While the fully inhomogeneous inflationary initial conditions 
represent a rather complicated topic whose proper formulation is 
beyond the scopes of this paper, in what follows we shall content 
ourselves with the conventional lore in a system where the infla-
ton field ϕ evolves under the action of its own potential W (ϕ)

and in the presence of spatial inhomogeneities (characterized by 
the three-dimensional Ricci scalar R); to account for a possible 
decelerated behaviour in the preinflationary epoch, we shall also 
include the contribution of an ambient relativistic fluid whose en-
ergy density will be denoted by ρ . When the various components 
of the system are all in equipartition we approximately have1:

ϕ̇2 � W (ϕ) � ρ � RM2
P, (3)

where the overdot denotes a derivation with respect to the cosmic 
time coordinate t . Since the kinetic energy, the spatial curvature 
and the fluid energy density are all diluted faster than W (ϕ), 
Eq. (3) implies, in the conventional lore, that the Universe inflates 
before becoming inhomogeneous; this conclusion holds provided 
the background was expanding prior to t∗ . A successful inflation-
ary dynamics can also be realized in other situations compatible 
with Eq. (3) like, for instance, W (ϕ) � ϕ̇2 � ρ � RM2

P: also in 
this case all the components of the energy–momentum tensor will 
quickly disappear and the potential will dominate even faster than 
in the case of Eq. (3). Conversely, if the approximate equipartition 
of Eq. (3) is violated, the typical scale of the potential gets much 
smaller than the other components of the system: various inverted 
hierarchies can be envisaged and they turn out to be particularly 
relevant in the case of plateau-like potentials [11]. For instance it 
can happen that ϕ̇2 � ρ � RM2

P � W : in this case the kinetic en-
ergy is diluted more rapidly than the other terms and, after few 
efolds, the spatial gradients contained in R dominate the evolu-
tion of the sources while the potential is still too small to play any 
role so that the Universe fails to inflate.2 For the present ends what 
matters is not the likelihood of inflation (or its naturalness) given a 
generic set of initial data but just the observation that Eq. (3) and 
its descendants are based on the scaling properties of the various 
components of the total energy–momentum tensor under the im-
plicit assumption that the geometry is already expanding. We shall 
therefore grant that the initial stages of the inflationary phase are 
continuously preceded by an epoch where the geometry expands 
in a decelerated manner and study, in this standard framework, 
the evolution of the spatial gradients.

Within the conventional formulation of the inflationary ini-
tial conditions it can be naively expected that f (t) and g(t) will 
be going to zero as a power (for t < t∗) and quasi-exponentially 
(for t > t∗). The governing equations of the system imply that 
the evolution of g(t) depends directly on the sources (see below, 
Eqs. (22)–(24)) while in the case of f (t) the evolution reads:

1 The Planck mass will be defined as MP = 1/
√

8πG where G is the Newton 
constant; the Planck length, in these natural units, is just the inverse of MP, i.e. 
	P = √

8πG .
2 Other potentially dangerous hierarchies are, for instance, ϕ̇2 � W � RM2

P � ρ

and ϕ̇2 � W � RM2
P � ρ .

f̈ + 3H ḟ + 2H2∗
(

a∗
a

)2

= 0, H = ȧ

a
. (4)

Introducing the initial integration time ti , the solution of Eq. (4)
depends on f i = f (ti) and ḟ i = ḟ (ti) and can be written as:

ḟ (t) = ḟ i

(
ai

a

)3

− 2H2∗
(

a∗
a

)3 t∫
ti

a(t′)
a∗

dt′,

f (t) = f i + a3∗ ḟ i

t∫
ti

dt′

a3(t′)
− 2H2∗a2∗

t∫
ti

dt′

a3(t′)

t′∫
ti

a(t′′)dt′′. (5)

The explicit form of a(t) is obtainable by solving the zeroth-order 
in the gradient expansion but let us just assume that ä < 0 and 
ȧ > 0 for t < t∗ . Such a functional behaviour is realized, for in-
stance,3 when a(t) ∼ a∗(t/t∗)1/δ provided 1 < δ ≤ 3. For t > t∗
we posit instead that ä > 0 and ȧ > 0 and the conventional in-
flationary dynamics implies ε = −Ḣ/H2 � 1. Under the conditions 
expressed by Eq. (3) the solution of Eq. (4) in the two asymptotic 
limits, naively implies4:

lim
a�a∗

f (a) →
(

a

a∗

)2(δ−1)

, lim
a�a∗

f (a) →
(

a

a∗

)−2+2ε

. (6)

Not surprisingly, Eq. (6) is consistent with the results separately 
obtainable in the two limits (see, e.g. [1,2] and [4–6]) but what 
matters here is that such a condition seems to demand the ex-
istence of an extremum for a ∼ O(a∗) or t � O(t∗). According to 
Eq. (5) the existence of a maximum would imply that | ḟ (t)| → 0
for t � t∗ , where the absolute value accounts for the possibility 
of negative values of f (t). The vanishing of ḟ (t) can occur ei-
ther for finite cosmic time (but then we must have that ḟ i 
= 0) 
or asymptotically for t � t∗ . The choice ḟ i 
= 0 causes the pres-
ence of divergent term in the limit t � t∗ and this clashes with the 
possibility of imposing quasi-homogeneous initial conditions in the 
preinflationary phase, as conventionally assumed. According to this 
argument, what can happen, at most is | ḟ | → 0 for t � t∗; if this 
is the case the gradients will not be asymptotically suppressed 
but f (t) will rather reach a constant value. Thus the smooth and 
monotonic evolution of the extrinsic curvature across the protoin-
flationary transition does not seem sufficient to guarantee that the 
spatial gradients will be exponentially suppressed during the fully 
developed inflationary phase. The simplistic way of reasoning pur-
sued in this paragraph assumes, without proof, a certain behaviour 
of the scale factor. In what follows we shall then focus the atten-
tion to the full zeroth-order and first-order solutions in the case 
when the extrinsic curvature interpolates between a decelerated 
regime and an accelerated evolution in the vicinity of t∗ .

We are now ready to consider the general system of equations: 
separating the extrinsic curvature (Kij = −γ̇i j/2) from the contri-
bution of the intrinsic curvature (Ri j ), the (00) and (0i) compo-
nents of the contracted Einstein equations read:

K̇ − TrK 2 = 	2
P

[
(3p + ρ)

2
+ (p + ρ)u2 + ϕ̇2 − W (ϕ)

]
, (7)

3 Note, incidentally, that if the preinflationary background is dominated by a per-
fect fluid with constant barotropic index w , then δ = 3(w + 1)/2; conversely if the 
preinflationary background is dominated by the kinetic energy of the inflaton (and 
the ambient fluid is absent) δ → 3.

4 If regarded in cosmic time, the requirements of Eq. (6) translate in an approx-
imate interpolating form of f (t) that could be written, up to slow roll corrections, 
as f (t) � (t/t∗)2(δ−1)/δ+1/[e2H∗t − 1]. As we shall demonstrate, this plausible guess, 
implying ḟ (t) � 0 for t � t∗ , is not supported by the explicit dynamics of the spatial 
gradients.
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