
Physics Letters B 741 (2015) 262–266

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

On the electroweak contribution to the matching of the strong 

coupling constant in the SM

A.V. Bednyakov

Joint Institute for Nuclear Research, 141980 Dubna, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 November 2014
Accepted 24 December 2014
Available online 31 December 2014
Editor: G.F. Giudice

Keywords:
Standard Model
Renormalization group
Strong coupling

The effective renormalizable theory describing electromagnetic and strong interactions of quarks of five 
light flavors (n f = 5 QCD × QED) is considered as a low-energy limit of the full Standard Model. Two-
loop relation between the running strong coupling constants αs defined in either theories is found 
by simultaneous decoupling of electroweak gauge and Higgs bosons in addition to the top-quark. The 
relation potentially allows one to confront “low-energy” determination of αs with a high-energy one 
with increased accuracy. Numerical impact of new O(αsα) terms is studied at the M Z scale. It is shown 
that the corresponding contribution, although being suppressed with respect to O(α2

s ) terms, is an order 
of magnitude larger than the three-loop QCD corrections O(α3

s ) usually taken into account in four-
loop renormalization group evolution of αs . The dependence on the matching scale is also analyzed 
numerically.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The strong coupling constant αs being a fundamental parame-
ter of the Standard Model (SM) Lagrangian is not predicted by the 
model and should be determined from experiment. The theory of 
strong interactions, Quantum Chromodynamics (QCD), embedded 
in the SM, should allow one to relate different observables mea-
sured at different scales. In perturbation theory (PT) one usually 
employs the notion of running coupling αs(Q 2) (see Ref. [1] for a 
recent discussion on its determination) depending on some char-
acteristic scale Q of the considered process, so that predictions are 
typically given by (truncated) series in αs(Q 2). The dependence of 
αs on Q 2 is given through the renormalization group (RG) equa-
tion

dαs(Q 2)

d ln Q 2
= β

(
αs

(
Q 2)). (1)

A proper choice of Q 2 allows one to sum up a certain type of log-
arithmic corrections appearing at each order of PT. In the minimal 
MS renormalization scheme [2] beta-functions have a simple poly-
nomial form and are known up to the four-loop level [3,4]. How-
ever, it is a well-known fact (see, e.g., the pioneering work [5] and 
reviews in Refs. [6,7]) that in the models with very different mass 
scales m � M one needs to employ the “running-and-decoupling” 
procedure to re-sum large logarithms involving ratios of particle 
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masses log m/M in the “low-energy” observables.1 Application of 
this technique to perturbative calculations results in the absorp-
tion of leading effects due to heavy degrees of freedom with mass 
O(M) in the parameters of the effective theory (ET). This pro-
cedure is usually applied in QCD [8–12] to decouple (“integrate 
out”) heavy quarks and define running α(n f )

s (μ) in the effective 
n f -flavor theory.2 In addition to this, a study of matching correc-
tions [14–16] is unavoidable if one is interested in high-energy 
behavior of the SM (see, e.g., [16,17]). The latter is analyzed with 
the help of the RGEs [18–25] which take into account all the inter-
actions of the SM.

It is also worth mentioning that the same method can be 
applied to the supersymmetric (SUSY) extensions of the SM: 
SUSY–QCD corrections are considered in Refs. [26–29] and lead-
ing corrections due to electroweak interactions are calculated in 
Refs. [30,31].

The value of the running strong coupling αs(Q ) can be deter-
mined (see Ref. [32] for a comprehensive review and the references
therein) from a bunch of experiments with a characteristic scale 
Q ranging from the tau-lepton mass mτ = 1.77682(16) GeV up 
to about 1 TeV. In addition, electroweak precision fits and lattice 
QCD calculations can be used to yield a value for αs . In order 

1 Related to processes with characteristic scale Q � m.
2 Quark running masses are also affected by decoupling (see Ref. [13] and the 

references therein).
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to compare different measurements and determinations with each 
other and use them in a global analysis of QCD, effective couplings 
extracted from experiments are converted to the MS-scheme and 
evolved by means of RGEs (1) to the reference scale which is cho-
sen to be M Z .

In the above-mentioned RGE analysis one usually neglects the 
influence of electroweak interactions on the strong coupling. How-
ever, it is obvious that since QCD is embedded in the SM, virtual 
electroweak bosons can also modify the strength of the strong 
interactions (and vice versa). This effect, however, starts at the 
two-loop level. The aim of the present paper is to apply the de-
coupling procedure to find a two-loop relation between the strong 
coupling defined in the n f = 5 QCD × QED effective theory and 
that of the full SM. Additional terms due to integrated W -, Z -, and 
Higgs bosons can be used to decrease an uncertainty in the predic-
tion of the SM strong coupling αs(M Z ) from, e.g., αs(mτ ) extracted 
from tau-lepton decays, or, vice versa, a more accurate estimate of 
the effective αs can be made given the SM input.

Let us give a brief description of the calculation techniques to-
gether with the approximations employed. It is convenient to carry 
out matching at the level of Green functions3 of light fields by 
comparing the results obtained in the effective and a more funda-
mental theory. By integrating out heavy degrees of freedom (the 
top-quark with mass mt , the W - and Z -bosons with masses mW

and mZ , respectively, and the Higgs boson with mass mh) we ob-
tain an effective (“low-energy”) description of the SM valid far 
below the electroweak scale. The latter is parametrized by an ef-
fective Lagrangian, which involves non-renormalizable operators 
in addition to the renormalizable ones. Both types of operators 
contribute to the Green functions of ET. However, the latter are 
suppressed by the inverse power of some large mass scale. The 
couplings for the ET operators can be deduced from the parame-
ters of a more fundamental theory, the SM in our case, by means 
of matching (decoupling) procedure.

In theories with spontaneously broken symmetries the applica-
tion of the decoupling procedure suffers from the following sub-
tlety. Since particle masses are related to the corresponding Higgs 
couplings, a large mass limit can be obtained either by setting 
the Higgs field vacuum expectation value (VEV) v to infinity or 
by assuming that v is fixed but (some of) the couplings (e.g., the 
top-quark Yukawa coupling) tend to infinity (see, e.g., [33] and the 
references therein). In literature, one usually utilizes the latter op-
tion and speaks of “non-decoupling” feature of the top-quark since 
the corresponding Yukawa coupling is expressed in terms of its 
mass.

In this paper, we assume that the decoupling limit is obtained 
by setting v → ∞, so that non-renormalizable Fermi-type opera-
tors are neglected. Nevertheless, a certain hierarchy in the Higgs 
couplings is assumed. Light quarks, which are not integrated out 
and are “left” in ET, are considered to be massless and, as a conse-
quence, have vanishing Yukawa couplings to the Higgs boson. All 
other Higgs couplings are treated on equal footing.

An additional comment regarding the neglected interactions of 
the Higgs boson is in order. If we want to take, e.g., b-quark 
Yukawa coupling into account, we inevitably have to consider the 
matching of non-renormalizable operators in ET (e.g., Fermi-type 
operators). This is due to the fact that both the dimensionless 
Yukawa couplings in the full theory and the non-renormalizable 
ET interactions, which are formally suppressed by m2

W , can lead 
to comparable contributions O(m2

b/m2
W ) to the Green functions 

utilized for matching. Our setup allows us to circumvent this dif-
ficulty and avoid matching of non-renormalizable ones, which are 

3 One can also consider observables for matching.

suppressed by the ratio of “soft” (in our setup it is either some 
external momentum or the mass of a light quark) and “hard” (elec-
troweak) scale.

In the considered problem electroweak interactions can only 
appear in loops involving quarks so that the electroweak bosons 
contribute starting with the two-loop level. Due to this, the rela-
tion between the strong coupling constants defined in the effective 
five-flavor QCD×QED (denoted by α′

s) and the full SM (αs) has the 
following form:

α′
s = αsζαs

= αs

(
1 + αs

4π
δζ

(1)
αs + α2

s

(4π)2
δζ

(2)
αs + αsα

(4π)2
δζ

(2)
αsα + . . .

)
, (2)

where the running couplings are assumed to be renormalized in 
the MS-scheme and the dependence on the decoupling scale μ is 
implied. The strong coupling αs and the fine-structure constant α
in the right-hand side (RHS) of Eq. (2) are defined in the full SM. 
Pure QCD corrections to the decoupling constant ζαs were calcu-
lated quite a long time ago [34] and are given at the two-loop 
level by the expressions (C A = 3, C F = 4/3, T F = 1/2):

δζ
(1)
αs = X (1)

αs ln
m2

t

μ2
, X (1)

αs = 4

3
T f = 2

3
(3)

δζ
(2)
αs = X (0)

α2
s

+ X (1)

α2
s

ln
m2

t

μ2
+ X (2)

α2
s

ln2 m2
t

μ2
(4)

X (0)

α2
s

=
(

32

9
C A − 15C F

)
T f = −14

3

X (2)

α2
s

= 16

9
T 2

f = 4

9
, X (1)

α2
s

=
(

20

3
C A + 4C F

)
T f = 38

3
(5)

in which mt corresponds to the top-quark pole mass. The latter 
can be expressed in terms of the running mass m̂t in perturba-
tion theory. However, the advantage of mt lies in the fact that it 
corresponds to an “observable” (modulo subtleties mentioned in 
Refs. [1,35]) quantity. In addition, this choice allows one to keep all 
the dependence of δζ (i)

αs on the matching scale μ explicit. Since we 
are interested in the electroweak corrections, the relation between 
m̂t and mt should be considered in the full SM. Let us mention a 
crucial role of tadpole diagrams rendering the corresponding run-
ning mass m̂t a gauge-independent quantity (see, e.g., Ref. [36] and 
the references therein). Initially, the result for δζ (2)

αsα has been ob-
tained in terms of running parameters in the MS-scheme (with 
the account of tadpole diagrams as in Ref. [37]) and latter recal-
culated with the on-shell counter-term for the top-quark mass. 
As expected, the tadpole contribution to the considered quantity 
was canceled by the counter-term allowing one from the very 
beginning to ignore the tadpole issue. The price to pay for this 
kind of simplifications is gauge-dependence of the top-quark mass 
counter-term. Having this in mind, in what follows we present the 
expression for δζ (2)

αsα in terms of “physical” masses referring to the 
well-known one-loop relation between the pole and running quark 
masses [14,38,39] in the Standard Model.4

For the calculation of δζ
(2)
αsα we have used the fact that the 

renormalized decoupling constant can be deduced from the re-
lation between the bare couplings5 [8], denoted by α′

s0 and αs0, 
after proper renormalization, i.e.,

4 For consistency one should neglect all masses but m2
t , m2

W , m2
Z and m2

h when 
expressing mt in terms of m̂t .

5 Considered in dimensionally regularized theory with space–time dimension d =
4 − 2ε.
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