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In the probe limit, we numerically build a holographic p-wave superfluid model in the four-dimensional 
Lifshitz black hole coupled to a Maxwell-complex vector field. We observe the rich phase structure and 
find that the Lifshitz dynamical exponent z contributes evidently to the effective mass of the matter field 
and dimension of the gravitational background. Concretely, we obtain that the Cave of Winds appeared 
only in the five-dimensional anti-de Sitter (AdS) spacetime, and the increasing z hinders not only the 
condensate but also the appearance of the first-order phase transition. Furthermore, our results agree 
with the Ginzburg–Landau results near the critical temperature. In addition, the previous AdS superfluid 
model is generalized to the Lifshitz spacetime.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The gauge/gravity duality [1] builds a powerful relationship be-
tween the many-body system in the quantum mechanics with the 
strong interaction and the classical dynamical black hole with a 
higher dimension of spacetime, hence, in the past decades, it has 
been widely used to study various strongly coupled systems. In 
particular, via this holographic duality, various high-temperature 
superconductors1 were constructed, which involve different grav-
itational backgrounds as well as matter fields, see, for example, 
Refs. [2–15] and the references therein.

All the above superconductor models are almost based on the 
isotropic gravitational backgrounds. Due to the various anisotropies
of superconductors in the condensed matter system, the authors 
of Ref. [16] proposed a (d + 2)-dimensional gravity dual to the Lif-
shitz anisotropic scaling of the space and time, ds2 = L2(−r2zdt2 +
r2d�x2 + dr2

r2 ), where d�x2 = dx2
1 + · · · + dx2

d , r ∈ (0, ∞), z is the dy-
namical critical exponent, and L is a cosmological constant. In 
particular, the Lifshitz fixed points scale the space and time as 
t → bzt, �x → b�x (z �= 1). For related works, see also, for instance, 
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1 According to the gauge/gravity duality, there is no dynamical gauge field in 
the dual field theory [5]. Therefore, the current induced by the applied magnetic 
field cannot produce an equal and opposite canceling field in the superconductor to 
exclude the external magnetic field, which is different from the ordinary supercon-
ductor but rather similar to thin superconducting films or wires.

Refs. [17–19]. In addition, the gravity duality with the anisotropy 
between two spatial directions exists, see, for example, Refs. [20,
21]. In the remainder of this paper, we will set for simplicity 
L = 1. Subsequently, the Lifshitz spacetime was extended to a 
(d + 2)-dimensional finite-temperature system [22]

ds2 = −r2z f (r)dt2 + dr2

r2 f (r)
+ r2

d∑
i=1

dx2
i ,

f (r) = 1 − rz+d
0

rz+d
, (1)

where r0 denotes the location of the event horizon. Moreover, the 
Hawking temperature can be written as T = (z+d)rz

0
4π . To see the 

anisotropic effect, some holographic superconductors were con-
structed in the Lifshitz black hole backgrounds, see, for example, 
Refs. [23–33], where the results showed that the larger Lifshitz 
parameter z hinders the condensate. More than that, the Lifshitz 
parameter z contributes to the effective dimension of the gravita-
tional background.

In order to generalize the above superconductor models to the 
ones with a steady current, holographic superfluid solutions were 
constructed by performing a deformation to the superconducting 
black hole [34,35], and were further investigated in Refs. [36–42]. 
It follows that below the critical temperature T0 with the van-
ishing superfluid velocity, there is a special value of T , beyond 
(below) which the phase transition is of second (first) order. We 
call the critical superfluid velocity corresponding to this special 
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temperature as the translating superfluid velocity. Moreover, in the 
five-dimensional (5D) anti-de Sitter (AdS) black hole background, 
the authors of Ref. [40] found that when the temperature de-
creases, the second-order transition occurs before the first-order 
transition to a new superconducting phase.

Recently, motivated by Ref. [2], a new holographic p-wave su-
perconductor model was built by coupling a Maxwell-complex vec-
tor (MCV) field with the four-dimensional (4D) Schwarzschild AdS 
black hole [43], for related works, see Refs. [44–50]. It was shown 
that only the external magnetic field can induce the condensate, 
which is similar to result of the QCD vacuum phase transition in 
Ref. [51] compared with ones in Ref. [52]. In addition, even in 
the Lifshitz spacetime, this MCV model is still a generalization of 
the usual p-wave model realized by the SU(2) Yang–Mills (YM) 
gauge field [3]. Because of the anisotropic properties of the super-
fluid model in the real world, for example, the He3 superfluid, it 
is valuable to construct the holographic p-wave superfluid model 
by coupling the MCV model in the 4D Lifshitz black hole. More in-
teresting questions are whether we can see (i) the Cave of Winds 
only existed in the 5D AdS black hole when considering the effects 
of Lifshitz parameter z on the dimension of the gravitational back-
ground; (ii) the disappearance of the first-order phase transition 
due to the fact that the larger parameter z hinders the condensate. 
Answering these questions is just the purpose of this paper.

Based on the above mentioned, we will build a holographic su-
perfluid model in the 4D Lifshitz black hole coupled with the MCV 
field in the probe limit. Interestingly, we obtain the rich structure, 
especially the Cave of Winds, which means that the Lifshitz pa-
rameter z contributes evidently to the effective mass of the matter 
field and the dimension of the background spacetime. Moreover, 
the larger z not only decreases the critical temperature, but also 
hinders the emergence of the first-order phase transition.

The paper is organized as follows. In Section 2, we obtain the 
equations of motion and the grand potential for the superfluid 
model. We numerically study the condensate and the supercurrent 
in Sections 3 and 4, respectively. The last section is devoted to the 
conclusions and further discussions.

2. Equations of motion and the grand potential

In this section, we derive the equations of motion in terms of 
the MCV field, following which we obtain the grand potential.

The MCV matter action including a Maxwell field and a com-
plex vector field reads [47]

Sm = 1

16πG4

∫
dx4√−g

(
−1

4
Fμν F μν − 1

2
ρ

†
μνρ

μν

− m2ρ
†
μρμ + iqγρμρ

†
ν F μν

)
, (2)

where Fμν is the strength of the Maxwell field Aμ and ρμν =
Dμρν − Dνρμ with the covariant derivative Dμ = ∇μ − iq Aμ , 
while m and q are the mass and the charge of the vector field ρμ , 
respectively. The last term with a coefficient γ stands for the in-
teraction between ρμ and Aμ , which is crucial to the effect of the 
magnetic field in the holographic model [43–46]. However, in this 
paper we do not consider the magnetic field, hence, it will not 
contribute to our work. Moreover, we will work in the probe limit 
that can be realized by taking q → ∞ with qρμ and q Aμ fixed.

By varying the action (2), we obtain the equations of motion

Dνρνμ − m2ρμ + iqγρν Fνμ = 0, (3)

∇ν Fνμ − iq
(
ρνρ

†
νμ − ρν†ρνμ

)
+ iqγ ∇ν

(
ρνρ

†
μ − ρ

†
νρμ

) = 0. (4)

As Ref. [50], we turn on the following ansatzs for ρμ and Aμ

ρνdxν = ρx(r)dx, Aνdxν = φ(r)dt + A y(r)dy. (5)

Thus the concrete equations of motion in terms of the matter field 
are given by

ρ ′′
x +

(
z + 1

r
+ f ′

f

)
ρ ′

x − ρx

r2 f

(
m2 − φ2

r2z f
+ A2

y

r2

)
= 0, (6)

φ′′ + 3 − z

r
φ′ − 2ρ2

x

r4 f
φ = 0, (7)

A′′
y +

(
z + 1

r
+ f ′

f

)
A′

y − 2ρ2
x

r4 f
A y = 0. (8)

When we turn off the spatial component A y(r), Eqs. (6) and (7)
reduce to the ones in Ref. [45], while Eqs. (6), (7) and (8) with 
z = 1 are the same with the ones in Ref. [50].

Due to the difficulty to solve the above equations analytically, 
here we turn to the numerical approach, i.e., the shooting method 
[34,35,37–40]. Before the numerical calculation, we should impose 
some boundary conditions on Eqs. (6), (7) and (8). In particular, 
at the horizon, ρx(r0) and A y(r0) are required to be regular, while 
At(r0) vanishing in order for the normal form of gμν Aμ Aν . At the 
infinity boundary r → ∞, the general falloffs of the fields are of 
the forms

ρx(r) = ρx−
rΔ− + ρx+

rΔ+ + · · · , φ(r) = μ − ρ

r2−z
+ · · · ,

A y(r) = S y − J y

rz
+ · · · (9)

with Δ± = 1
2 (z ± √

z2 + 4m2). According to the gauge/gravity du-
ality, ρx− and ρx+ are usually interpreted as the source and the 
vacuum-expectation value of the boundary operator O x , respec-
tively, while μ, ρ , S y , and J y as the chemical potential, the charge 
density, the superfluid velocity, and the supercurrent, respectively. 
To satisfy the requirement that the symmetry is broken sponta-
neously, we impose the source-free condition, i.e., ρx− = 0.

There is a scaling symmetry for the asymptotical solutions (9)
as (r, S y) → λ(r, S y), (T , μ) → λz(T , μ), ρx+ → λΔ++1ρx+ , J y →
λz+1 J y and ρ → λ2ρ with λ a positive real constant, by using 
which we can fix the chemical potential and thus work in the 
grand canonical ensemble. As we know from Refs. [34,35,40], when 
the critical superfluid velocity increases beyond a translating value, 
the second-order phase transition will switch to the first-order 
one in the grand canonical ensemble. To determine which phase 
is more thermodynamically favored in this case, we should calcu-
late the grand potential Ω of the bound state, which is identified 
with the Hawking temperature times the Euclidean on-shell action. 
From the action (2), the on-shell action Sos reads

Sos =
∫

dxdydtdr
√−g

(
−1

2
∇μ

(
Aν F μν

)

− ∇μ

(
ρ

†
νρ

μν
) + 1

2
Aν∇μF μν

)

= V 2

T

(
−√−γ nrρ

†
νρ

rν
∣∣
r→∞−1

2

√−γ nr Aν F rν
∣∣
r→∞

+ 1

2

∞∫
r0

dr
√−g Aν∇μF μν

)
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