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In order to learn effectively from measurements of generalised parton distributions (GPDs), it is desirable 
to compute them using a framework that can potentially connect empirical information with basic 
features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-
ladder (RL) truncation of QCD’s Dyson–Schwinger equations and exemplified via the pion’s valence 
dressed-quark GPD, Hv

π (x, ξ, t). Our analysis focuses primarily on ξ = 0, although we also capitalise on 
the symmetry-preserving nature of the RL truncation by connecting Hv

π (x, ξ = ±1, t) with the pion’s 
valence-quark parton distribution amplitude. We explain that the impulse-approximation used hitherto 
to define the pion’s valence dressed-quark GPD is generally invalid owing to omission of contributions 
from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify 
a practicable improvement to the approximation for Hv

π (x, 0, t), expressed as the Radon transform of 
a single amplitude. Therewith we obtain results for Hv

π (x, 0, t) and the associated impact-parameter 
dependent distribution, qv

π (x, |�b⊥|), which provide a qualitatively sound picture of the pion’s dressed-
quark structure at a hadronic scale. We evolve the distributions to a scale ζ = 2 GeV, so as to facilitate 
comparisons in future with results from experiment or other nonperturbative methods.

© 2014 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Quarks were discovered in a series of deep inelastic scattering 
(DIS) experiments at the Stanford Linear Accelerator Center [1–3]. 
When analysed in the infinite momentum frame, i.e., treating the 
target as an extremely rapidly moving object, such experiments 
yield parton distribution functions (PDFs). PDFs are probability 
densities, which reveal how partons within the speeding target 
share the bound-state’s gross properties; e.g., there are PDFs that 
describe the distributions over the target’s constituent partons of 
the total longitudinal momentum and helicity. Crucially, this prob-
ability interpretation is only valid in the infinite-momentum frame 
owing to its connection with quantisation on the light-front [4–6], 
a procedure that ensures, inter alia, particle number conservation.

A good deal is known about hadron light-front structure af-
ter more than forty years of studying PDFs. Notwithstanding that, 
much more needs to be understood, particularly, e.g., in connection 
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with the distribution of helicity [7,8]. Moreover, PDFs only describe 
hadron light-front structure incompletely because inclusive DIS 
measurements do not yield information about the distribution of 
partons in the plane perpendicular to the bound-state’s total mo-
mentum, i.e., within the light front. Such information is expressed 
in generalised parton distributions (GPDs) [9–12], which are acces-
sible via deeply virtual Compton scattering on a target hadron, T ; 
viz., γ ∗(q)T (p) → γ ∗(q′)T (p′), so long as at least one of the pho-
tons [γ ∗(q), γ ∗(q′)] possesses large virtuality, and in the analo-
gous process of deeply virtual meson production: γ ∗(q)T (p) →
M(q′)T (p′). Importantly [see Section 2], GPDs connect PDFs with 
hadron form factors because any PDF may be recovered as a for-
ward limit of the relevant GPD and any hadron elastic form factors 
can be expressed via a GPD-based sum rule. The potential that 
GPDs hold for providing manifold insights into hadron structure 
has led to intense experimental and theoretical activity [13–17].

Most of the constraints that apply to GPDs are fulfilled when 
the GPD is written as a double distribution [10,18,19], which is 
equivalent to expressing the GPD as a Radon transform [20]:
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H(x, ξ, t) =
∫

|α|+|β|≤1

dα dβδ(x − α − ξβ)
[

F (α,β, t) + ξG(α,β, t)
]
,

(1)

where the variables x, ξ , t are defined following Eq. (2) and, at 
leading-twist, F , G have operator definitions analogous to the GPD 
itself. In order to obtain insights into the nature of hadron GPDs, 
it has been common to model the Radon amplitudes, F , G , follow-
ing Ref. [21]. This approach has achieved some phenomenological 
success [17,22]; but more flexible parameterisations enable a bet-
ter fit to data [23]. Such fits played a valuable role in establishing 
the GPD framework; but if one wishes to use measured GPDs as 
a means by which to validate our basic perception of strong in-
teractions in the Standard Model, then data fitting is inadequate. 
Instead, it is necessary to compute GPDs using a framework that 
possesses a direct connection with QCD. This observation is high-
lighted by experience drawn from the simpler case of the pion’s 
valence-quark PDF [24]. Herein, we therefore adopt a different ap-
proach, sketching a procedure for the computation of hadron GPDs 
based on the example provided by the pion’s valence-quark PDF.

2. General features of pion GPDs

From a quark model perspective, in the isospin symmetric limit, 
the pion is a quantum mechanical bound-state of two equal-mass 
constituents and it is therefore the simplest hadronic bound-state. 
That is a misapprehension, however. Owing to the connection be-
tween pion properties and dynamical chiral symmetry breaking 
(DCSB), i.e., its dichotomous nature as a Goldstone mode and rel-
ativistic bound-state [25,26], a veracious description of the pion is 
only possible within a framework that faithfully expresses symme-
tries and their breaking patterns. The Dyson–Schwinger equations 
(DSEs) fulfil this requirement [27–29] and hence we employ that 
framework to compute pion properties herein.

Notwithstanding the complex nature of the pion bound-state, 
it is still a J = 0 system and hence for a vector probe there is 
only one GPD associated with a quark q in the pion (π± , π0). It is 
defined by the matrix element

Hq
π (x, ξ, t) =

∫
d4z

4π
eixP ·zδ(n · z)δ2(z⊥)

× 〈
π(P+)

∣∣q̄(−z/2)n · γ q(z/2)
∣∣π(P−)

〉
, (2)

where: k, n are light-like four-vectors, satisfying k2 = 0 = n2, 
k · n = 1; z⊥ represents that two-component part of z annihi-
lated by both k, n; and P± = P ± 	/2. In Eq. (2), ξ = −n · 	/

[2n · P ] is the “skewness”, t = −	2 is the momentum transfer, and 
P 2 = t/4 − m2

π , P · 	 = 0. The GPD also depends on the resolv-
ing scale, ζ . Within the domain upon which perturbation theory 
is valid, evolution to another scale ζ ′ is described by the ERBL 
equations [30,31] for |x| < ξ and the DGLAP equations [32–35] for 
|x| > ξ , where ξ ≥ 0.

In order to produce quantities that are gauge invariant for all 
values of z, Eq. (2) should contain a Wilson line, W[−z/2, z/2], 
between the quark fields. Notably, for any light-front trajectory, 
W[−z/2, z/2] ≡ 1 in light-cone gauge: n · A = 0, and hence the 
Wilson line does not contribute in this case. On the other hand, 
light-cone gauge is seldom practicable in either model calcula-
tions or quantitative nonperturbative analyses in continuum QCD. 
Indeed, herein, as typical of nonperturbative DSE studies, we em-
ploy Landau gauge because, inter alia [36,37]: it is a fixed point of 
the renormalisation group; and a covariant gauge, which is readily 
implemented in numerical simulations of lattice-QCD. It is there-
fore significant that W[−z/2, z/2] is not quantitatively important 

in the calculation of the leading-twist contributions to numerous 
matrix elements [38].

It is worth recapitulating here upon some general properties 
of GPDs. Most generally, Poincaré covariance entails that GPDs are 
only nonzero on x ∈ (−1, 1). Moreover, owing to time-reversal in-
variance, Hq(x, ξ, t) = Hq(x, −ξ, t). Kinematically, the skewness is 
bounded: ξ ∈ [−1, 1], but ξ ∈ [0, 1] for all known processes that 
provide empirical access to GPDs.

Focusing on the pion, a charge conjugation mapping between 
charged states entails Hu,d

π+ (x, ξ, t) = −Hu,d
π− (−x, ξ, t); and conse-

quently, in the isospin symmetric limit:

Hu
π+(x, ξ, t) = −Hd

π+(−x, ξ, t). (3)

It follows that the isospin projections:

H I (x, ξ, t) := Hu
π+(x, ξ, t) + (−1)I Hd

π+(x, ξ, t), I = 0,1, (4)

have well-defined symmetry properties under x ↔ −x; viz., H0 is 
odd and H1 is even.

Returning to the definition in Eq. (2), it is plain that if one con-
siders the forward limit: ξ = 0, t = 0, then x is Bjorken-x and the 
GPD reduces to a PDF; viz.,

Hq
π (x,0,0) =

{
qπ (x), x > 0

−q̄π (−x), x < 0.
(5)

Moreover, irrespective of the value of ξ , the electromagnetic pion 
form factor may be computed as

Fπ+
(
	2) =

1∫
−1

dx
[
eu Hu

π+
(
x, ξ,−	2) + ed Hd

π+
(
x, ξ,−	2)] (6)

=: eu F u
π+

(
	2) + ed F d

π+
(
	2) = F u

π+
(
	2), (7)

where eu,d are the quark electric charges in units of the positron 
charge and we have used Eq. (3) to show F d

π+ (	2) = −F u
π+ (	2). 

Additional information may be found elsewhere [39].

3. Heuristic example

Imagine a bound-state of two scalar particles with effective 
mass σ and suppose that the interaction between them is such 
that it produces a light-front wave function of the form (x̄ = 1 − x):

ψ
(
x,k2⊥

) =
√

15

2πσ 2

√
xx̄

1 + k2⊥/(4σ 2xx̄)
θ(x)θ(x̄). (8)

(A merit of considering a bound-state of scalar constituents is 
that in describing the wave function of the composite system one 
avoids the complication of Melosh rotations, which arise in treating 
spin states in light-front quantum mechanics [5].) If the skewness 
is zero, in which case the momentum transfer is purely light-front 
transverse, then the GPD for this system can be written as a wave 
function overlap [13,14,40,41]:

Hσ

(
x,0,−	2⊥

) =
∫

d2k⊥ψ
(
x,k⊥ + (1 − x)	⊥

)
ψ(x,k⊥). (9)

This entails{
Hσ

(
x,0,−	2⊥

)
> 0 : x ∈ [−1,1],	2⊥ ≥ 0

}
. (10)

Owing to the simplicity of the starting point, Eqs. (8) and (9)
allow one to obtain an algebraic expression for the GPD; viz., with 
z2 = 	2⊥(1 − x)/4xσ 2, then
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