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We argue that the choice of an appropriate, massive, renormalization scheme can greatly improve the 
apparent convergence of perturbation theory at finite temperature. This is illustrated by the calculation 
of the pressure of a scalar field theory with quartic interactions, at 2-loop order. The result, almost 
identical to that obtained with more sophisticated resummation techniques, shows a remarkable stability 
as the coupling constant grows, in sharp contrast with standard perturbation theory.
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1. Introduction

Over the last two decades considerable efforts have been made 
to understand the behavior of perturbation theory in quantum 
field theory at finite temperature (for reviews, see [1–3]). These 
efforts are in part motivated by the physics of the quark–gluon 
plasma, and the hope that QCD asymptotic freedom would allow 
for reliable calculations at sufficiently high temperature. It is well 
known, however, that in QCD infrared divergences inevitably occur 
and eventually cause a breakdown of perturbation theory at a fi-
nite order in the expansion in powers of the coupling constant [4]. 
But even in theories where such a breakdown does not occur, such 
as in scalar theories, perturbation theory at finite temperature ap-
pears as poorly convergent as in QCD.

Two routes have been followed to try to overcome these dif-
ficulties. The first one is to include more and more terms into 
the perturbative series, hoping in doing so to compensate for the 
poor apparent convergence. Thus, the pressure of the massless 
scalar theory with a quartic interaction is now known up to or-
der g8 log(1/g) (see Ref. [5] and references therein). While definite 
improvements are observed at small coupling when high orders 
are taken into account, the bad behavior of the perturbative series 
resurfaces as soon as the coupling gets moderately large.

The other route involves various reorganizations of the pertur-
bative expansion, such as screened perturbation theory [6], infinite 
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resummations, the use of functional variational techniques such 
as the so-called 2PI (two particle irreducible) formalism [7], or 
the non-perturbative renormalization group (NPRG) [8]. Remark-
ably, all these approaches produce results that remain stable as 
one increases the coupling constant, in sharp contrast with strict 
perturbation theory. At the same time, some of these calcula-
tions suggest that the physics at moderate coupling is minimally 
non-perturbative. In particular, calculations using the functional 
renormalization group within the most sophisticated approxima-
tion scheme available [8,9] yield results that do not deviate much 
from simple self-consistent quasiparticle approximations (such as 
the lowest order 2PI approximation, or the local potential approxi-
mation of the NPRG [10]).

These latter results suggest to look for an underlying simplicity, 
and it is indeed the purpose of this paper to report on progress in 
this direction. We shall argue that the difficulties encountered in 
finite temperature calculations can be attributed to a large extent 
to inappropriate choices of renormalization schemes. The success 
of the NPRG invites us to look for a scheme where the thermal 
mass plays a central role, and also where a decoupling of modes 
occurs when the typical scales exceed the temperature, both fea-
tures that are automatically included in the NPRG. We shall exhibit 
such a massive renormalization scheme and show that it yields 
indeed a well behaved perturbative expansion. This will be illus-
trated in this letter with the calculation of the pressure of a scalar 
field theory. More elaborate calculations will be presented in forth-
coming publications.
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2. Massive thermal scheme

Let us start by recalling the origin of the difficulties with stan-
dard perturbation theory at finite temperature, focusing on a scalar 
theory of massive modes with quartic interactions ∼g2ϕ4 (see 
Eq. (4) below). The expansion parameter, which is not simply g2, 
depends on the magnitude of the average fluctuations of the field, 
given by (we ignore here the vacuum fluctuations)

〈
ϕ2〉

κ
≈

κ∫
d3p

(2π)3

np

Ep
≈ Tκ, np = 1

eEp/T − 1
, (1)

where Ep = √
m2 + p2, with m the mass, κ is an ultraviolet mo-

mentum cutoff and the approximation for 〈ϕ2〉κ is valid for κ � T . 
Using this, we can define a dimensionless expansion parameter, 
γκ , as the ratio between the interaction energy (∼g2〈ϕ2〉2

κ ), and 
the kinetic energy (∼κ2〈ϕ2〉κ ) of modes with typical momentum 
κ ,

γκ ∼ g2〈ϕ2〉κ
κ2

∼ g2T

κ
. (2)

Thus for κ ∼ T , the expansion parameter is essentially the coupling 
constant γT ∼ g2. However, γκ grows as κ decreases. Eventually 
γκ becomes of order unity when κ ∼ g2T , at which point standard 
perturbation theory breaks down.

However, at least in the case of scalar theories, this scenario is 
too pessimistic, and this for two reasons. Observe first that when 
m � κ � T the theory behaves as a massless three-dimensional 
theory with (dimensionful) coupling g2T . The associated dimen-
sionless coupling can be identified to γκ , and it obeys the one-loop 
renormalization group equation (see Eq. (23) below)

κ
dγκ

dκ
= −γκ + 3

16
γ 2
κ . (3)

The first term in this equation results from the analysis that we 
just presented, the second term is the one loop correction. This 
correction tames the growth of the coupling suggested by the first 
term, and indeed the infrared fixed-point at γ∗ = 16/3 prevents 
the blow-up of γκ . The success of the expansion in ε = 4 − d in-
dicates that perturbation theory in the vicinity of this fixed point 
is reasonably accurate [11]. The second reason which prevents the 
breakdown of perturbation theory is of course the generation of 
a thermal mass m of order gT which freezes the running of the 
coupling at the scale κ ∼ m.1

These considerations concerning the mechanisms that prevent 
the growth of the coupling, make paradoxical the fact that stan-
dard perturbation theory behaves so badly at finite temperature. 
In fact, as we have already alluded to, the reason may not be 
perturbation theory itself, but rather the particular scheme used. 
Most studies are done in non-decoupling schemes, such as the 
MS scheme, which is popular because of its technical simplicity. 
But the discussion above suggests the use of a scheme where the 
matching between the four-dimensional and the three-dimensional 
regimes when κ � T , as well as the suppression of fluctuations 
when κ � m, are manifest order by order in perturbation theory. 
We shall now present such a scheme.

We consider the theory of a scalar field ϕ with the action

S[ϕ] =
β∫

0

dτ

∫
ddx

{
1

2
∂μϕ∂μϕ + mB

2

2
ϕ2 + g2

B

4! ϕ
4
}
, (4)

1 In QCD, the long wavelength “magnetic” fluctuations have a mass of order g2 T , 
which is not large enough to prevent the breakdown of perturbation theory.

where mB and gB denote the bare mass and coupling constant, 
respectively. The upper bound of the integration over the imagi-
nary time τ is β = 1/T , where T is the temperature. In line with 
the previous discussion, we introduce a specific renormalization 
scheme with the following, temperature dependent, renormaliza-
tion conditions:

m2 = Γ (2)(p = 0,ω = 0, T ),

1 = dΓ (2)

dp2

(
p2 = μ2,ω = 0, T

)
,

g2 = Γ (4)
(
p2

sym = μ2,ωi = 0, T
)
, (5)

where Γ (2) and Γ (4) are renormalized n-point functions, and p2
sym

refers to a symmetric combination of 3-momenta. There is of 
course a large flexibility in the choice of renormalization condi-
tions. The scheme presented above satisfies the important require-
ment that the renormalized coupling constant g2 becomes inde-
pendent of the temperature when μ � T , so that we can isolate 
unambiguously thermal effects when comparing theories with dif-
ferent values of the coupling constant. The determination of the 
mass is more subtle. We want to use the thermal mass m that 
enters the first renormalization condition (5) within the free prop-
agators of the perturbative expansion. However, the renormaliza-
tion condition does not determine m, it just fixes the finite parts 
of counterterms so that m has a prescribed value. In order to re-
late this value to a mass that is known, we shall calculate m0, 
the mass at T = 0, at the order of perturbation theory at which 
we work. This will then provide a self-consistent equation (occa-
sionally referred to as a gap equation) for the determination of m
as a function of m0. One may be worried about the fact that the 
present scheme involves counterterms whose finite parts depend 
on the temperature. However, no temperature dependent infinities 
will remain if subdivergences are carefully eliminated.2

3. The 2-point function and the self-consistent thermal mass

The one-loop contribution to the 2-point function is easily cal-
culated:

Γ (2)(p,ω, T ) = m2 + δm2 + p2

+ g2T

2

∑
n

∫
ddq

(2π)d

1

ω2
n + q2 + m2

, (6)

where ωn = 2nπ T is a Matsubara frequency, and we used the fact 
that the self-energy is independent of p2 in order to ignore the 
field renormalization factor. We have set m2

B = m2 + δm2, where 
m is the renormalized mass. Note that the renormalization of the 
coupling constant at one-loop order has an impact on the 2-point 
function only when this is calculated at 2-loop order (see next sec-
tion). Accordingly, in Eq. (6), g is taken to be the renormalized 
coupling constant. It is convenient to set

I(m) ≡ T
∑

n

∫
q

1

ω2
n + q2 + m2

=
∫
q

1 + 2nq

2Eq
≡ I0(m) + IT (m),

(7)

where we have introduced the shorthand notation for momentum 
space integrations, to be used throughout this paper: 

∫
q = ∫ ddq

(2π)d . 

2 The explicit calculations of the thermal mass and of the pressure that are pre-
sented in this paper, illustrate how the divergences are eliminated. The calculation 
of the zero temperature pressure in particular shows that, once the mass subdi-
vergences are eliminated, the remaining divergence is a global divergence which is 
independent of the temperature, as it should (see Eq. (32)).
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