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Under the standard perturbation theory (SPT), we obtain the fully consistent third-order density
fluctuation and kernels for the general dark energy models without using the Einstein—de Sitter (EdS)
universe assumption for the first time. We also show that even though the temporal and spatial
components of the SPT solutions cannot be separable, one can find the exact solutions to any order in
general dark energy models. With these exact solutions, we obtain the less than % error correction of one-
loop matter power spectrum compared to that obtained from the EdS assumption for k = 0.1 hMpc~!
mode at z=0 (1, 1.5). Thus, the EdS assumption works very well at this scale. However, if one considers
the correction for P13, the error is about 6 (9,11)% for the same mode at z=0 (1, 1.5). One absorbs P13
into the linear power spectrum in the renormalized perturbation theory (RPT) and thus one should use
the exact solution instead of the approximation one. The error on the resummed propagator N of RPT
is about 14 (8,6)% at z=0 (1,1.5) for k = 0.4 hMpc~'. For k=1 hMpc~!, the error correction of the
total matter power spectrum is about 3.6 (4.6,4.5)% at z=10 (1, 1.5). Upcoming observation is required to
archive the sub-percent accuracy to provide the strong constraint on the dark energy and this consistent

solution is prerequisite for the model comparison.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

The standard perturbation theory (SPT) has been widely used
to investigate the correction to the linear power spectrum in a
quasi-nonlinear regime. The recent progress and the development
of alternative analytical methods have been made [1,2]. The ap-
proximate recursion relations for the Fourier components of the
n-th order matter density fluctuation $n(1, k) and the divergence of
the peculiar velocity én(r,k) has been obtained for the Einstein-
de Sitter (EdS) universe [3,4]. When one extends the SPT to the
general background universe, one uses the assumption that the de-
pendence of the SPT solutions on the cosmological parameters is
encoded in the linear growth factor, Di(a) [1]. This is also con-
firmed for the dark energy models [5,6]. However, this argument
is partly correct because one also needs to investigate the error on
the power spectrum induced from EdS assumption (i.e. the value
of the linear growth rate is equal to that of the square root of

the matter energy density contrast, f; = d(il?nD(JI = /$2m). We ob-

tain the exact kernels for Sn and én without using EdS assumption
and study its effect on the power spectrum.

The renormalized perturbation theory (RPT) tries to reorganize
the perturbative series expansion of SPT and resums some of the
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terms into a function that can be factorized out of the series [7,8].
This function is called as the resummed propagator and referred
as N. All the kernels of the higher order power spectrum terms
must be expressed as a product of kernels that correspond to full
mode coupling terms and full propagator terms in order to make
the resummation possible. If the kernels are approximated as a
product of one-loop propagator kernels, then the resummed prop-
agator is given by N(k) = exp[P13(k)/Pjin(k)]. We find that Pq3(k)
using EdS assumption causes 6-11% errors for k = 0.5 hMpc™!
mode at z=0-1.5 and these induce errors on N about 11-20%.

In addition to SPT, the Lagrangian perturbation theory (LPT) is
an another widely used analytic technique for the quasi-linear per-
turbative expansion. There also have been studies to investigate
the dark energy dependence on the linear growth factor in LPT [9,
10]. Recently, we also obtain the kernels in the recursion relations
without using EdS assumption in the LPT and investigate its con-
sequences on the one-loop power spectrum [11].

In this Letter, we obtain the exact relations for the temporal
and spatial components of the SPT solutions in general dark energy
models up to third order. When we obtain the kernels, we remove
the EdS assumption in the derivation and investigate the its effects
on the observable quantities. - .

The equations of motion of 8(z,k) and O(t,k) in the Fourier
space are given by
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Due to the mode coupling of the nonlinear terms shown in the
right hand side of Egs. (1)-(2), one needs to make a perturbative
expansion in § and 6 [1]. One can introduce the proper perturba-
tive series of solutions for the fastest growing mode D,
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To be consistent with the current observation, we consider the
dark energy dominated flat universe as a background model. It has
been known that the n-th order fastest growing mode solutions
are proportional to the n-th power of the linear growth factor D1
(ie. D™ o DY) for the EdS universe. And this is not true for the gen-
eral background models. There have been the investigations of the
validity of these ansatz (3) and (4) by using the different growth
rates for § and 6 [5,6]. However, the improper decomposition of
fastest mode solutions and the incorrect initial conditions are used
for the n-th order growth rate in both cases (see Appendix A).

If one takes a derivatives of Eq. (1) and replace Eq. (2) into it,
then one obtains
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From Egs. (1) and (11), one obtaiAns the expressions for the higher
order solutions of §@, §®, and §® as
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