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We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can 
be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such 
an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge 
symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler 
modulus T . Using this mechanism it is shown that the �(54) non-Abelian discrete symmetry group 
originates from a SU(3) gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2)

gauge symmetry.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

It is important to understand the flavor structure of the stan-
dard model of particle physics. Quark and lepton masses are hier-
archical. Two of the mixing angles in the lepton sector are large, 
while the mixing angles in the quark sector are suppressed, except 
for the Cabibbo angle. Non-Abelian discrete flavor symmetries may 
be useful to understand this flavor structure. Indeed, many works 
have considered field-theoretical model building with various non-
Abelian discrete flavor symmetries (see [1–3] for reviews).

Understanding the origin of non-Abelian flavor symmetries is 
an important issue we have to address. It is known that several 
phenomenologically interesting non-Abelian discrete symmetries 
can be derived from string models.1 In intersecting and magne-
tized D-brane models, the non-Abelian discrete symmetries D4, 
�(27) and �(54) can be realized [5–8]. Also, their gauge ori-
gins have been studied [6]. In heterotic orbifold compactifications 
[9–17] (also see a review [18]), non-Abelian discrete symmetries 
appear due to geometrical properties of orbifold fixed points and 
certain properties of closed string interactions [19]. First, there are 
permutation symmetries of orbifold fixed points. Then, there are 
string selection rules which determine interactions between orb-
ifold sectors. The combination of these two kinds of discrete sym-
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1 In [4], field theoretical models where non-Abelian discrete groups are embed-
ded into non-Abelian gauge groups are considered.

metries leads to a non-Abelian discrete symmetry. In particular, it 
is known that the D4 group emerges from the one-dimensional 
orbifold S1/Z2, and that the �(54) group is obtained from the 
two-dimensional orbifold T 2/Z3. The phenomenological applica-
tions of the string-derived non-Abelian discrete symmetries are 
analyzed e.g. in [20].

In this paper we point out that these non-Abelian discrete fla-
vor symmetries originate from a gauge symmetry. To see this, 
we consider a heterotic orbifold model compactified on some six-
dimensional orbifold. The gauge symmetry Ggauge of this orbifold 
model is, if we do not turn on any Wilson lines, a subgroup of 
E8 × E8 which survives the orbifold projection. In addition, from 
the argument in [19], we can derive a non-Abelian discrete sym-
metry Gdiscrete. Then, the effective action of this model can be 
derived from Ggauge ×Gdiscrete symmetry invariance.2 However, this 
situation slightly changes if we set the model to be at a symmetry 
enhanced point in moduli space. At that special point, the gauge 
symmetry of the model is enlarged to Ggauge × Genhanced, where 
Genhanced is a gauge symmetry group. The maximal rank of the 
enhanced gauge symmetry Genhanced is six, because we compactify 
six internal dimensions. At this specific point in moduli space, orb-
ifold fixed points are characterized by gauge charges of Genhanced, 
and the spectrum is extended by additional massless fields charged 
under Genhanced. Furthermore, the Kähler moduli fields T in the 
untwisted sector obtain Genhanced-charges and a non-zero vacuum 
expectation value (VEV) of T corresponds to a movement away 

2 Here we do not consider the R-charge invariance since this is not relevant to 
our discussion.
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from the enhanced point. This argument suggests the possibility 
that the non-Abelian discrete symmetry Gdiscrete is enlarged to a 
continuous gauge symmetry Genhanced at the symmetry enhanced 
point. In other words, it suggests a gauge origin of the non-Abelian 
discrete symmetry. Moreover, the group Genhanced originates from 
a larger non-Abelian gauge symmetry that exists before the orb-
ifolding. We will show this explicitly in the following.

2. Gauge origin of non-Abelian discrete symmetry

In this section we demonstrate the gauge origin of non-Abelian 
discrete symmetries in heterotic orbifold models. We concentrate 
on the phenomenologically interesting non-Abelian discrete sym-
metries D4 and �(54) which are known to arise from orbifold 
models.

2.1. D4 non-Abelian discrete symmetry

First, we study a possible gauge origin of the D4 non-Abelian 
discrete symmetry. This symmetry is associated with the one-
dimensional S1/Z2 orbifold. Here, we consider the heterotic string 
on a S1/Z2 orbifold, but it is straightforward to extend our argu-
ment to T 2/Z2 or T 6/(Z2 × Z2). The coordinate corresponding to 
the one dimension of S1 is denoted by X . It suffices to discuss 
only the left-movers in order to develop our argument. Let us start 
with the discussion on S1 without the Z2 orbifold. There is always 
a U (1) symmetry associated with the current H = i∂ X . At a spe-
cific point in the moduli space, i.e. at a certain radius of S1, two 
other massless vector bosons appear and the gauge symmetry is 
enhanced from U (1) to SU(2). Their currents are written as

E± = e±iαX , (1)

where α = √
2 is a simple root of the SU(2) group. These currents, 

H and E± , satisfy the su(2) Kac–Moody algebra.
Now, let us study the Z2 orbifolding X → −X . The current 

H = i∂ X is not invariant under this reflection and the correspond-
ing U (1) symmetry is broken. However, the linear combination 
E+ + E− is Z2-invariant and the corresponding U (1) symmetry re-
mains on S1/Z2. Thus, the SU(2) group breaks down to U (1) by 
orbifolding. Note that the rank is not reduced by this kind of orb-
ifolding. It is convenient to use the following basis,

H ′ = i∂ X ′ = 1√
2
(E+ + E−), (2)

E ′± = e±iαX ′ = 1√
2

H ∓ 1

2
(E+ − E−). (3)

The introduction of the boson field X ′ is justified because H ′ and 
E ′± satisfy the same operator product expansions (OPEs) as the 
original currents H and E± . The invariant current H ′ corresponds 
to the U (1) gauge boson. The E ′± transform as

E ′± → −E ′± (4)

under the Z2 reflection and correspond to untwisted matter fields 
U1 and U2 with U (1) charges ±α. In addition, there are other 
untwisted matter fields U which have vanishing U (1) charge, but 
are charged under an unbroken subgroup of E8 × E8.

From (4), it turns out that the Z2 reflection is represented by a 
shift action in the X ′ coordinate,

X ′ → X ′ + 2π
w

2
, (5)

where w = 1/
√

2 is the fundamental weight of SU(2). That is, the 
Z2-twisted orbifold on X is equivalent to a Z2-shifted orbifold on 

Table 1
Field contents of U (1) � Z2 model from Z2 orbifold. U (1) charges are shown. 
Charges under the Z4 unbroken subgroup of the U (1) group are also shown.

Sector Field U (1) charge Z4 charge

U U 0 0
U U1 α 0
U U2 −α 0
T M1

α
4

1
4

T M2 − α
4 − 1

4

X ′ with the shift vector s = w/2 (see e.g., [21]). In the twist repre-
sentation, there are two fixed points on the Z2 orbifold, to each of 
which corresponds a twisted state. Note that the one-dimensional 
bosonic string X with the Z2-twisted boundary condition has a 
contribution of h = 1/16 to the conformal dimension. In the shift 
representation, the two twisted states can be understood as fol-
lows. Before the shifting, X ′ also represents a coordinate on S1 at 
the enhanced point, so the left-mover momenta pL lie on the mo-
mentum lattice

ΓSU(2) ∪ (ΓSU(2) + w), (6)

where ΓSU(2) is the SU(2) root lattice, ΓSU(2) ≡ nα with integer n. 
Then, the left-mover momenta in the Z2-shifted sector lie on the 
original momentum lattice shifted by the shift vector s = w/2, i.e.(

ΓSU(2) + w

2

)
∪

(
ΓSU(2) + 3w

2

)
. (7)

Thus, the shifted vacuum is degenerate and the ground states have 
momenta pL = ±α/4. These states correspond to charged matter 
fields M1 and M2. Note that p2

L/2 = 1/16, which is exactly the 
same as the conformal dimension h = 1/16 of the twisted vacuum 
in the twist representation. Indeed, the twisted states can be re-
lated to the shifted states by a change of basis [21]. Notice that 
the twisted states have no definite U (1) charge, but the shifted 
states do. Table 1 shows corresponding matter fields and their 
U (1) charges.

From Table 1, we find that there is an additional Z2 symmetry 
of the matter contents at the lowest mass level (in a complete 
model, these can correspond to massless states): Transforming the 
U (1)-charges q as

q → −q, (8)

while at the same time permuting the fields as U1 ↔ U2 and 
M1 ↔ M2 maps the spectrum onto itself. The action on the Ui
and Mi fields is described by the 2 × 2 matrix(

0 1
1 0

)
. (9)

This Z2 symmetry does not commute with the U (1) gauge sym-
metry and it turns out that one obtains a symmetry of semi-direct 
product structure, U (1) � Z2.

In the twist representation, this model contains the Kähler 
modulus field T , which corresponds to the current H and is 
charged under the U (1) group. In the shift representation, the field 
T is described by the fields Ui as

T = 1√
2
(U1 + U2). (10)

Now we consider the situation where our orbifold moves away 
from the enhanced point by taking a specific VEV of the Kähler 
modulus field T which corresponds to the VEV direction

〈U1〉 = 〈U2〉. (11)
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