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We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can
be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such
an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge
symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kihler
modulus T. Using this mechanism it is shown that the A(54) non-Abelian discrete symmetry group

originates from a SU(3) gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2)

gauge symmetry.
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1. Introduction

It is important to understand the flavor structure of the stan-
dard model of particle physics. Quark and lepton masses are hier-
archical. Two of the mixing angles in the lepton sector are large,
while the mixing angles in the quark sector are suppressed, except
for the Cabibbo angle. Non-Abelian discrete flavor symmetries may
be useful to understand this flavor structure. Indeed, many works
have considered field-theoretical model building with various non-
Abelian discrete flavor symmetries (see [1-3] for reviews).

Understanding the origin of non-Abelian flavor symmetries is
an important issue we have to address. It is known that several
phenomenologically interesting non-Abelian discrete symmetries
can be derived from string models.! In intersecting and magne-
tized D-brane models, the non-Abelian discrete symmetries Dg,
A(27) and A(54) can be realized [5-8]. Also, their gauge ori-
gins have been studied [6]. In heterotic orbifold compactifications
[9-17] (also see a review [18]), non-Abelian discrete symmetries
appear due to geometrical properties of orbifold fixed points and
certain properties of closed string interactions [19]. First, there are
permutation symmetries of orbifold fixed points. Then, there are
string selection rules which determine interactions between orb-
ifold sectors. The combination of these two kinds of discrete sym-
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metries leads to a non-Abelian discrete symmetry. In particular, it
is known that the D4 group emerges from the one-dimensional
orbifold S'/Z,, and that the A(54) group is obtained from the
two-dimensional orbifold T2/Z3. The phenomenological applica-
tions of the string-derived non-Abelian discrete symmetries are
analyzed e.g. in [20].

In this paper we point out that these non-Abelian discrete fla-
vor symmetries originate from a gauge symmetry. To see this,
we consider a heterotic orbifold model compactified on some six-
dimensional orbifold. The gauge symmetry Ggauge Of this orbifold
model is, if we do not turn on any Wilson lines, a subgroup of
Eg x Eg which survives the orbifold projection. In addition, from
the argument in [19], we can derive a non-Abelian discrete sym-
metry Ggiscrete- 1hen, the effective action of this model can be
derived from Ggauge X Gdiscrete Symmetry invariance.> However, this
situation slightly changes if we set the model to be at a symmetry
enhanced point in moduli space. At that special point, the gauge
symmetry of the model is enlarged t0 Ggauge X Genhanced, Where
Genhanced IS @ gauge symmetry group. The maximal rank of the
enhanced gauge symmetry Genhanced iS SiX, because we compactify
six internal dimensions. At this specific point in moduli space, orb-
ifold fixed points are characterized by gauge charges of Gephanced,
and the spectrum is extended by additional massless fields charged
under Gephanced- Furthermore, the Kiahler moduli fields T in the
untwisted sector obtain Geppanced-charges and a non-zero vacuum
expectation value (VEV) of T corresponds to a movement away

2 Here we do not consider the R-charge invariance since this is not relevant to
our discussion.
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from the enhanced point. This argument suggests the possibility
that the non-Abelian discrete symmetry Ggiscrete iS €nlarged to a
continuous gauge symmetry Gephanced at the symmetry enhanced
point. In other words, it suggests a gauge origin of the non-Abelian
discrete symmetry. Moreover, the group Gephanced Originates from
a larger non-Abelian gauge symmetry that exists before the orb-
ifolding. We will show this explicitly in the following.

2. Gauge origin of non-Abelian discrete symmetry

In this section we demonstrate the gauge origin of non-Abelian
discrete symmetries in heterotic orbifold models. We concentrate
on the phenomenologically interesting non-Abelian discrete sym-
metries D4 and A(54) which are known to arise from orbifold
models.

2.1. D4 non-Abelian discrete symmetry

First, we study a possible gauge origin of the D4 non-Abelian
discrete symmetry. This symmetry is associated with the one-
dimensional S!/Z, orbifold. Here, we consider the heterotic string
on a S'/Z, orbifold, but it is straightforward to extend our argu-
ment to T%/Z, or T®/(Zy x Z3). The coordinate corresponding to
the one dimension of S! is denoted by X. It suffices to discuss
only the left-movers in order to develop our argument. Let us start
with the discussion on S without the Z, orbifold. There is always
a U(1) symmetry associated with the current H =i9X. At a spe-
cific point in the moduli space, i.e. at a certain radius of S!, two
other massless vector bosons appear and the gauge symmetry is
enhanced from U (1) to SU(2). Their currents are written as
Ei — eﬂ:iu{X’ (1)
where o = /2 is a simple root of the SU(2) group. These currents,
H and E, satisfy the su(2) Kac-Moody algebra.

Now, let us study the Z; orbifolding X — —X. The current
H =i9dX is not invariant under this reflection and the correspond-
ing U(1) symmetry is broken. However, the linear combination
E+ + E_ is Z-invariant and the corresponding U (1) symmetry re-
mains on S'/Z,. Thus, the SU(2) group breaks down to U(1) by
orbifolding. Note that the rank is not reduced by this kind of orb-
ifolding. It is convenient to use the following basis,

1

H’:iax’:ﬁ(5++5,), (2)
w1 1
E/, = eFioX =EH$§(5+—E—)- (3)

The introduction of the boson field X’ is justified because H' and

! satisfy the same operator product expansions (OPEs) as the
original currents H and E.. The invariant current H’ corresponds
to the U(1) gauge boson. The E/, transform as

El, — —E/ (4)

under the Z; reflection and correspond to untwisted matter fields
Ui and U; with U(1) charges +«. In addition, there are other
untwisted matter fields U which have vanishing U(1) charge, but
are charged under an unbroken subgroup of Eg x Eg.

From (4), it turns out that the Z; reflection is represented by a
shift action in the X’ coordinate,

w
x/—>x/+2n5, (5)

where w = 1/ﬁ is the fundamental weight of SU(2). That is, the
Z»-twisted orbifold on X is equivalent to a Z,-shifted orbifold on

Table 1
Field contents of U(1) X Z; model from Z, orbifold. U(1) charges are shown.
Charges under the Z4 unbroken subgroup of the U(1) group are also shown.

Sector Field U(1) charge Z4 charge
8] u 0 0
U Uy o 0
U U2 —a 0
1
T My i q
T M, -< 7111

X" with the shift vector s = w/2 (see e.g., [21]). In the twist repre-
sentation, there are two fixed points on the Z, orbifold, to each of
which corresponds a twisted state. Note that the one-dimensional
bosonic string X with the Z;-twisted boundary condition has a
contribution of h =1/16 to the conformal dimension. In the shift
representation, the two twisted states can be understood as fol-
lows. Before the shifting, X’ also represents a coordinate on Sp at
the enhanced point, so the left-mover momenta p; lie on the mo-
mentum lattice

Tsyey U (Tsy) +w), (6)

where Isy(z) is the SU(2) root lattice, I'syp) = na with integer n.
Then, the left-mover momenta in the Z,-shifted sector lie on the
original momentum lattice shifted by the shift vector s = w/2, i.e.

w 3w
FSU(2)+3 U FSU(2)+7 . (7)

Thus, the shifted vacuum is degenerate and the ground states have
momenta p; = +« /4. These states correspond to charged matter
fields M7 and M;. Note that p%/z = 1/16, which is exactly the
same as the conformal dimension h =1/16 of the twisted vacuum
in the twist representation. Indeed, the twisted states can be re-
lated to the shifted states by a change of basis [21]. Notice that
the twisted states have no definite U(1) charge, but the shifted
states do. Table 1 shows corresponding matter fields and their
U(1) charges.

From Table 1, we find that there is an additional Z, symmetry
of the matter contents at the lowest mass level (in a complete
model, these can correspond to massless states): Transforming the
U(1)-charges q as

q— —q, (8)

while at the same time permuting the fields as U; <> U and
My <> M, maps the spectrum onto itself. The action on the U;
and M; fields is described by the 2 x 2 matrix

0 1

This Z, symmetry does not commute with the U(1) gauge sym-
metry and it turns out that one obtains a symmetry of semi-direct
product structure, U(1) x Z.

In the twist representation, this model contains the Kahler
modulus field T, which corresponds to the current H and is
charged under the U(1) group. In the shift representation, the field
T is described by the fields U; as

1

T=—(U1+Uy). (10)
V2

Now we consider the situation where our orbifold moves away

from the enhanced point by taking a specific VEV of the Kahler

modulus field T which corresponds to the VEV direction

(Uq) = (U2). (11)
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