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In this paper, we present a fully analytical description of the early-stage formation of elliptic flow in
relativistic viscous hydrodynamics. We first construct an elliptic deformation of Gubser flow which is
a boost invariant solution of the Navier-Stokes equation with a nontrivial transverse profile. We then
analytically calculate the momentum anisotropy of the flow as a function of time and discuss the
connection with the empirical formula by Bhalerao et al. regarding the viscosity dependence of elliptic
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1. Introduction

One of the most intriguing results of ultrarelativistic heavy ion
collisions at the RHIC and the LHC is the strong collectivity of
the created hot and dense matter, especially the considerable el-
liptic flow [1-6]. In non-central collisions, the overlapping region
of the colliding nuclei approximately has the shape of an ellipse
in the transverse plane. This region expands hydrodynamically,
and the initial anisotropy in the pressure gradient gets converted
into momentum space anisotropy, resulting in the modulation of
the azimuthal angle distribution of charged particles in the final
state [7]:
dN 1+2 2 1
d¢o< + 2v3 cos2¢. (1)
The coefficient v, is called the elliptic flow parameter and is one
of the central objects of experimental and theoretical study in
heavy-ion physics because it is a sensitive probe of the equilib-
rium/nonequilibrium properties of the created matter.

While the mechanism to generate v, is well understood, little
is known about its analytical details. Theoretically, the extraction
of v, relies heavily on numerical (viscous) hydrodynamic simula-
tions supplemented with some initial condition and the equation
of state (see, e.g., [8-17]). In this paper, we provide a fully analyt-
ical description of the early-stage formation of v, by deriving and
utilizing an approximate elliptic solution of the relativistic Navier—
Stokes equation. Such an analysis has long been infeasible due to
the difficulty of constructing realistic elliptically-shaped solutions
of hydrodynamic equations for which only a few attempts have
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been made in the literature [18-21]. The new solution we are able
to present here has been achieved along the line of the recent
progress in constructing exact solutions of viscous hydrodynamic
equations using conformal symmetry [22-26]. Within the region
of validity of the solution, one can study explicitly how the ellip-
tic flow develops as a function of proper time and how the shear
viscosity affects this evolution.

In Section 2, we review the Gubser flow [22,23] which is an ex-
act boost-invariant solution of the relativistic Navier-Stokes equa-
tion with nontrivial radial flow velocities. In Section 3, we use
the so-called Zhukovsky transform to elliptically deform the Gub-
ser flow in the transverse plane and construct an approximate
solution. We then calculate in Section 4 the momentum space
anisotropy of this flow and discuss the connection to the empir-
ical formula proposed by Bhalerao et al. [27] regarding the shear
viscosity dependence of the elliptic flow. In the end, we summarize
in Section 5.

2. Gubser flow

In this section, we briefly review the exact boost-invariant solu-
tion of the relativistic Navier-Stokes equation found by Gubser [22,
23]. The solution is naturally explained by rewriting the Minkowski
metric as

ds? = —dt? 4 dx* + dy? + d7?
= —dt? +d%3 +3%d¢? + £2d¢?, )

where 7 =+/t2 — 22 is the proper time and ¢ = tanh™' 2/f is the
space-time rapidity. In this coordinate system, the four-velocity i*
of the fluid (normalized as i, i* = —1) reads
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with iy =1, =0 and L is roughly the initial transverse size of

the fluid. The f—independence of Eq. (3) and {I; =0 mean that the
flow expands in the longitudinal (Z) direction in a boost-invariant
way. It also expands in the transverse direction with the transverse

velocity
_b 2tk
Uy 2482437

(4)

Plugging this velocity profile into the relativistic Navier-Stokes
equation and assuming conformal symmetry, Gubser obtained the

following exact solution for the energy density
s 1 ct

E=F5———==
£4 (cosh p)8/3

4
37 5
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where C > 0 is a constant and the shear viscosity 7/ has been made
dimensionless by factoring out the corresponding power of the en-
ergy density 7o = 7/E3/4. In Eq. (5), we have defined

2
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The following components of the shear tensor will be needed for
a later calculation.

sinhp = — (6)
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As already pointed out by Gubser, the solution has a patholog-
ical behavior at large negative values of p corresponding to large
%1 and/or small 7. Indeed, when |sinh p| >> 1 one can approxi-
mate

375 9
2“(2 62 ‘5‘“h20> ~ - (=sinh )77 + O(sinh™ p), (8)

so that

5. C4 o 2/3 4
e t4(cosh? p)4/3 |:1 2C{( sinh p) +O(1)}} ®)
The quantity inside the square brackets is proportional to the tem-
perature T o« £1/4 and this becomes negative for sufficiently nega-
tive values of p. This is actually not surprising since the relativistic
(first-order) Navier-Stokes equation is known to have unphysical
features.! As demonstrated in Ref. [24], the problem can be cured
by switching to the (second-order) Israel-Stewart equation. For the
present purpose, we are not concerned about this issue since one
can consider 1o to be arbitrarily small (or C arbitrarily large) so

! The problem of negative temperature also appears in an exact solution of the
Navier-Stokes equation for the Bjorken flow [26].

that the temperature remains positive in a parametrically large re-
gion of X, and 7.

. 3/2
TL
> (@> : (10)
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In this region, the solution is well-behaved and offers an attrac-
tive model for the studies of strongly interacting matter created in
heavy-ion collisions as discussed in Refs. [22,23].

3. Elliptic solution

The Gubser solution described above is cylindrically symmet-
ric around the Z-axis. Here we relax this restriction and construct
an approximate solution which has the shape of an ellipse in the
transverse plane. This can be achieved by employing the so-called
Zhukovsky (Joukowski) transform? which maps a circle onto an el-
lipse as follows

a? 2

N asx
Xx=|x — Jcosp=x+ ——,
<L+X¢> ¢ +x2+y2
2 2
N a ) a‘y
=(x.——)sing=y - ——, 11
y <¢ M) =y e (11)

where a is a constant and we only consider the region xL > a. As is
manifest in its complex representation & = Xx+iy = a)+ ,Eq. (11)
is a conformal transformation in two-dimensions and therefore the
metric is preserved up to a Weyl factor

R R 2 2 4
dx? +dy? = <1 — iz cos2¢ + aT)(dx2 +dy?)
Xy X1
= A?(dx® + dy?). (12)

Embedding this in four-dimensions, we obtain
ds? = —dt? + d&* + dy* + t2dZ?

2
=A? [—drz +dx% +x% de? + t2de? — %dtdA

7'.2
- ﬁ«m)z}, (13)

where we have relabeled T = At and f = ¢. If the last two terms
were absent, the metric inside the square brackets would be ex-
actly Minkowskian. Let us find the conditions under which these
terms can indeed be neglected. More explicitly, we find

2a® 2\d
dA=L2|:(c052¢— a—2)£+sin2¢d¢]. (14)
Ax X X1

1 1
Since the elliptic deformation ~ cos2¢ is an O(az/le) effect, we
assume a?/x% < 1 and neglect terms of order O(a*/x%). Then the
(dA)2 term in (13) can be safely dropped. In order to drop the
cross term O(dtdA) as well, we must additionally assume that
x> T and neglect terms of order O(ta?/x3) relative to the lead-
ing term.

Under these conditions, the coordinate systems (, %, 7, ¢) and
(t,x,y,¢) are conformally related, and one can map the Gubser
solution expressed in the former coordinates into the latter.> The
transformation rule is given by

2 The Zhukovsky transform was originally used to determine the two-dimensional
incompressible potential flow around an airfoil.

3 Since Eq. (11) is not an element of the Mébius transformation, it cannot ex-
actly be promoted to a four-dimensional conformal transformation. This is why the
solution obtained is an approximate one.
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