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A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular
wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator.
The entropy of the mass spectrum acquires then independent contributions from the average mass and
the width. Hence, Bekenstein's area entropy is formulated using the (mass?) average, leaving the (mass)

average to set the Hawking temperature. The width function peaks at the Planck scale for an elementary
(zero entropy, zero free energy) micro black hole of finite rms size, and decreases Doppler-like towards

the classical limit.
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Bekenstein-Hawking black hole area entropy [1] constitutes a
triple point in the phase of physical theories, connecting gravity,
quantum mechanics, and statistical mechanics. However, despite
several illuminating derivations [2], the statistical roots of black
hole entropy have not been fully revealed, not even at the level of
discrete models [3]. There exist a few extreme black hole solutions
[4], notably beyond general relativity, where one can apparently
count micro states. But as far as the prototype Schwarzschild black
hole is concerned, we still do not have the finest idea where these
micro states are hiding, and how to enumerate them. A classi-
cal black hole is characterized by its event horizon, but once i
is switched on (to allow for a finite Hawking temperature and
non-zero Bekenstein entropy), even the innocent looking question
‘where is this horizon located’ lacks a decisive answer in the quan-
tum or even in the semi-classical level.

The quantum-mechanical Schwarzschild black hole is hereby
described by a non-singular minimal uncertainty wave packet
composed of plane wave eigenstates. We carry out our analysis
at the mini super spacetime level [5] without relying on theories
beyond general relativity such as string theory [6], the fuzzball
proposal [7], or loop quantum gravity [8] (see [9] for a different
approach). Treating the black hole as a subsystem (a field theory
defined on a black hole background is expected to be in a thermal
state), its Gaussian mass spectrum becomes temperature depen-
dent. We invoke Fowler prescription [10] for dealing with such
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subsystems, and show that the associated statistical entropy ac-
quires independent contributions from the average mass as well
as from the width, and consistently formulate Bekenstein’s area
ansatz by means of the (mass?) average. While, as expected, the
(mass) average turns out to be inversely proportional to Hawk-
ing temperature, a novel temperature dependent width function
makes its appearance. The width function is maximal at the re-
duced Planck mass for an elementary quantum-mechanical black
hole of finite rms size, for which both the entropy and free en-
ergy vanish and are minimal, and decreases Doppler-like towards
the classical limit.

Let our starting point be the most general static radially sym-
metric line element, expressed in the form

YO) o 21 o 200 202

> dt +x(r)dr + 1% (d6* + sin® 0 dp*). (1)
The unfamiliar x, y representation has been carefully designed to
avoid the appearance of explicit r-dependence in the constrained
Hamiltonian formalism (see Ref. [11]| for the canonically trans-
formed r-dependent Berry-Keating type [12] Hamiltonian). A ten-
able gauge pre-fixing option, namely defining a radial marker r
whose geometrical interpretation is x, y-independent, has been
harmlessly exercised. This has to be contrasted with the forbid-
den gauge prefixing of the ‘lapse’ function (the coefficient of dr? in
this case), which kills the Hamiltonian constraint and introduces
an unphysical degree of freedom (no gauge pre-fixing in Kuchar’s
midi superspace approach [13]). The more so at the mini super-
spacetime level, where the general relativistic action [ RJ—gd*x
is integrated out over time and solid angle into the mini action
J L X,y y rdr.

ds® =
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A word of caution is in order: Throughout this paper we treat
[ L(,q,rdr in full mathematical analogy with [ L(q,q,t)dt.
Technically, the t-evolution is traded for the r-evolution, both clas-
sically and quantum-mechanically, with the notions of Lagrangian
and Hamiltonian being adapted accordingly. A similar technique
has been introduced by York and Schmekel [14]. To sharpen the
point, we clarify that our ‘Hamiltonian’ (to be identified with the
momentum Dirac-conjugate [15] to the mass operator) has nothing
to do with the physical mass of the black hole.

Up to a total derivative and an overall absorbable factor, the
mini super-spacetime Lagrangian takes the form

L(x,x/,y,y’)=(——2>\/j——\/7 (2)

Being linear in the ‘velocities’, it gives rise to two primary second

class constraints, namely
3y
Px=Dx— 7,/ = =0, (3)
4V x

. +1 X"’O
y =Dy 2 yN»

whose Poisson brackets do not vanish {¢y, ¢x} = 2\/— Following

Dirac prescription [15], we are then driven from the naive Hamil-
tonian H = pxx' + pyy’ — L =2./y/x to the total Hamiltonian

#Hr =2ﬁ +22 4y + 26 (4)
X X

One can verify that the corresponding classical solution is (and is
nothing but) the Schwarzschild solution
Yo _xm _,2m -
202 2r r
with no restrictions on the sign of the integration parameters m
and w. Along the classical trajectories the Hamiltonian takes the
value H = 2w, telling us that the H is not the total physical mass
of the system.

To quantize the system it becomes crucial to calculate the Dirac
brackets, and here one finds first of all

X ylp=2xy#0 (6)

Counter-intuitively, and potentially with far reaching consequences,
two metric components do not Dirac-commute. Moreover, the rela-

tion {x, %H} p = 1 paves then the way for the quantum-mechanical
commutation relations [x, J7] = ih. H is then faithfully repre-
sented by
.0
H=—-2ih—. (7)
ox

By the same token, in accord with Eq. (6), the other metric com-
ponent y is represented by y = %HX'H.
¢x,y are second class constraints, so ¢x = ¢, =0 are auto-
matically fulfilled. Denoting by 2w the eigenvalues of #, the cor-
responding eigenstates are simple plane waves. Their full r-‘evolu-
tion’ is given by
Voo (X, ) = ——e P00 (8)
They are not localized and form a §-normalizable set. The most
general solution is of the form  (x —2r). We are however after the
‘most classical’ wave packet defined by the minimal uncertainty
relation AXA7H = h, namely
_ (x—2r+4m)2
e 6402
v N =—7—7, 9)
2Q2m)i /o

for which the classical Schwarzschild solution (5) is both the aver-
age as well as the most probable configuration. We thus expect
the wave packet Eq. (9) to capture all semi-classical essence of
black hole thermodynamics. We have limited ourselves in this pa-
per to the 'most classical’ black hole wave packet simply because
Bekenstein-Hawking thermodynamics is formulated in the back-
ground of a classical event horizon. One can even construct an
orthonormal tower of non-minimal uncertainty wave packets [11],
to be regarded a prediction of the mini super-spacetime approach
(to be discuss elsewhere), none of which sharing the Schwarzschild
configuration as the most probable. Eq. (9) is a superposition of
plane waves. Its Fourier transform is given by

1]/(7'[) — 2—‘/_1 —402H? 21m7-l (10)
(2m)3
We identify the mass operator as M = %(Zr — x) (in the
H-language it reads M = —%ih%). For the Gaussian wave packet
(9) it means
(My=m, (M} =m?+o2 (11)

The black wave packet probability density 'y can be directly
translated into a statistical mechanics normalized mass spectrum
_ (M—m)?

Mim.oy=4 " (12)
M 0) = e
While a non-negative average mass m > 0 (the classical choice) is
soon to be dictated on thermodynamical grounds, the mass dis-
tribution must cover, for the sake of quantum completeness, the
entire range —oo < M < oco. However, the probability to have nega-
tive masses drops like ~ exp(—m?2/202) towards the classical limit.

At this stage, one may wonder where is the black hole hori-
zon actually located? As far as our wave packet is concerned, there
is nothing special going on in the neighbourhood of r = 2Gm/c?
(and actually also not near the origin). Supported by Eq. (6), this
suggests that a sharp horizon is merely a classical gravitational
concept. However, one may still effectively interpret Eq. (12) as
the quantum-mechanical profile of the horizon, with a probabil-
ity density p(M;m, o) to find it at radius 2GM/c?. In some sense,
this reminds us of the fuzzball proposal [7] where the black hole
arises from coarse graining over horizon-free non-singular geome-
tries. See [16] for horizon wave packets, and [14,17] for horizon
fluctuations.

Treating the quantum-mechanical black hole as a subsystem (a
field theory defined on a black hole background is expected to be
in a thermal state whose temperature at infinity is the Hawking
temperature), its Gaussian mass spectrum is temperature depen-
dent. Following Fowler prescription for dealing with such a case,
the naive partition function must be modified according to

Z(B)=_ pne PP, (13)

with the Boltzmann factor being traded for the Gibbs-Helmholtz
factor. The Helmholtz free energy function F obeys the Gibbs-
Helmholtz equation

B
= ﬂF(ﬂ):fE(b)db, (14)
Bo

with Bp to be fixed on physical grounds. To proceed, it is con-
venient to discretize the problem by dividing the normal mass
distribution p(M;m, o) into N equal probability and temperature

F+ﬂ£—5(ﬂ)
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