
Physics Letters B 736 (2014) 267–271

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Quantum black hole wave packet:
Average area entropy and temperature dependent width

Aharon Davidson ∗, Ben Yellin

Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 July 2014
Accepted 17 July 2014
Available online 22 July 2014
Editor: M. Cvetič

A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular 
wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator. 
The entropy of the mass spectrum acquires then independent contributions from the average mass and 
the width. Hence, Bekenstein’s area entropy is formulated using the 〈mass2〉 average, leaving the 〈mass〉
average to set the Hawking temperature. The width function peaks at the Planck scale for an elementary 
(zero entropy, zero free energy) micro black hole of finite rms size, and decreases Doppler-like towards 
the classical limit.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

Bekenstein–Hawking black hole area entropy [1] constitutes a 
triple point in the phase of physical theories, connecting gravity, 
quantum mechanics, and statistical mechanics. However, despite
several illuminating derivations [2], the statistical roots of black 
hole entropy have not been fully revealed, not even at the level of 
discrete models [3]. There exist a few extreme black hole solutions 
[4], notably beyond general relativity, where one can apparently 
count micro states. But as far as the prototype Schwarzschild black 
hole is concerned, we still do not have the finest idea where these 
micro states are hiding, and how to enumerate them. A classi-
cal black hole is characterized by its event horizon, but once h̄
is switched on (to allow for a finite Hawking temperature and 
non-zero Bekenstein entropy), even the innocent looking question 
‘where is this horizon located’ lacks a decisive answer in the quan-
tum or even in the semi-classical level.

The quantum-mechanical Schwarzschild black hole is hereby 
described by a non-singular minimal uncertainty wave packet 
composed of plane wave eigenstates. We carry out our analysis 
at the mini super spacetime level [5] without relying on theories 
beyond general relativity such as string theory [6], the fuzzball 
proposal [7], or loop quantum gravity [8] (see [9] for a different 
approach). Treating the black hole as a subsystem (a field theory 
defined on a black hole background is expected to be in a thermal 
state), its Gaussian mass spectrum becomes temperature depen-
dent. We invoke Fowler prescription [10] for dealing with such 
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subsystems, and show that the associated statistical entropy ac-
quires independent contributions from the average mass as well 
as from the width, and consistently formulate Bekenstein’s area 
ansatz by means of the 〈mass2〉 average. While, as expected, the 
〈mass〉 average turns out to be inversely proportional to Hawk-
ing temperature, a novel temperature dependent width function 
makes its appearance. The width function is maximal at the re-
duced Planck mass for an elementary quantum-mechanical black 
hole of finite rms size, for which both the entropy and free en-
ergy vanish and are minimal, and decreases Doppler-like towards 
the classical limit.

Let our starting point be the most general static radially sym-
metric line element, expressed in the form

ds2 = − y(r)

2r
dt2 + 2r

x(r)
dr2 + r2(dθ2 + sin2 θ dφ2). (1)

The unfamiliar x, y representation has been carefully designed to 
avoid the appearance of explicit r-dependence in the constrained 
Hamiltonian formalism (see Ref. [11] for the canonically trans-
formed r-dependent Berry–Keating type [12] Hamiltonian). A ten-
able gauge pre-fixing option, namely defining a radial marker r
whose geometrical interpretation is x, y-independent, has been 
harmlessly exercised. This has to be contrasted with the forbid-
den gauge prefixing of the ‘lapse’ function (the coefficient of dr2 in 
this case), which kills the Hamiltonian constraint and introduces 
an unphysical degree of freedom (no gauge pre-fixing in Kuchar’s 
midi superspace approach [13]). The more so at the mini super-
spacetime level, where the general relativistic action 

∫
R√−g d4x

is integrated out over time and solid angle into the mini action ∫
L(x, x′, y, y′, r)dr.
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A word of caution is in order: Throughout this paper we treat ∫
L(q, q′, r)dr in full mathematical analogy with 

∫
L(q, ̇q, t)dt . 

Technically, the t-evolution is traded for the r-evolution, both clas-
sically and quantum-mechanically, with the notions of Lagrangian 
and Hamiltonian being adapted accordingly. A similar technique 
has been introduced by York and Schmekel [14]. To sharpen the 
point, we clarify that our ‘Hamiltonian’ (to be identified with the 
momentum Dirac-conjugate [15] to the mass operator) has nothing 
to do with the physical mass of the black hole.

Up to a total derivative and an overall absorbable factor, the 
mini super-spacetime Lagrangian takes the form

L
(
x, x′, y, y′) =

(
3x′

4
− 2

)√
y

x
− y′

4

√
x

y
. (2)

Being linear in the ‘velocities’, it gives rise to two primary second 
class constraints, namely

φy = p y + 1

4

√
x

y
≈ 0, φx = px − 3

4

√
y

x
≈ 0, (3)

whose Poisson brackets do not vanish {φy, φx} = 1
2
√

xy . Following 
Dirac prescription [15], we are then driven from the naive Hamil-
tonian H = pxx′ + p y y′ −L = 2

√
y/x to the total Hamiltonian

HT = 2

√
y

x
+ 2

y

x
φy + 2φx. (4)

One can verify that the corresponding classical solution is (and is 
nothing but) the Schwarzschild solution

y(r)

2ω2r
= x(r)

2r
= 1 − 2m

r
, (5)

with no restrictions on the sign of the integration parameters m
and ω. Along the classical trajectories the Hamiltonian takes the 
value H = 2ω, telling us that the H is not the total physical mass 
of the system.

To quantize the system it becomes crucial to calculate the Dirac 
brackets, and here one finds first of all

{x, y}D = 2
√

xy �= 0 (6)

Counter-intuitively, and potentially with far reaching consequences, 
two metric components do not Dirac-commute. Moreover, the rela-
tion {x, 12H}D = 1 paves then the way for the quantum-mechanical
commutation relations [x, 12H] = ih̄. H is then faithfully repre-
sented by

H = −2ih̄
∂

∂x
. (7)

By the same token, in accord with Eq. (6), the other metric com-
ponent y is represented by y = 1

4HxH.
φx,y are second class constraints, so φxψ = φyψ = 0 are auto-

matically fulfilled. Denoting by 2ω the eigenvalues of H, the cor-
responding eigenstates are simple plane waves. Their full r-‘evolu-
tion’ is given by

ψω(x, r) = 1√
4π

e
i
h̄ ω(x−2r). (8)

They are not localized and form a δ-normalizable set. The most 
general solution is of the form ψ(x −2r). We are however after the 
‘most classical’ wave packet defined by the minimal uncertainty 
relation 	x	H = h̄, namely

ψ(x, r) = e
− (x−2r+4m)2

64σ2

2(2π)
1
4
√

σ
, (9)

for which the classical Schwarzschild solution (5) is both the aver-
age as well as the most probable configuration. We thus expect 
the wave packet Eq. (9) to capture all semi-classical essence of 
black hole thermodynamics. We have limited ourselves in this pa-
per to the ’most classical’ black hole wave packet simply because 
Bekenstein–Hawking thermodynamics is formulated in the back-
ground of a classical event horizon. One can even construct an 
orthonormal tower of non-minimal uncertainty wave packets [11], 
to be regarded a prediction of the mini super-spacetime approach 
(to be discuss elsewhere), none of which sharing the Schwarzschild 
configuration as the most probable. Eq. (9) is a superposition of 
plane waves. Its Fourier transform is given by

ψ̃(H) = 2
√

σ

(2π)
1
4

e−4σ 2H2
e2imH. (10)

We identify the mass operator as M = 1
4 (2r − x) (in the 

H-language it reads M = − 1
2 ih̄ ∂

∂H ). For the Gaussian wave packet
(9) it means

〈M〉 = m,
〈
M2〉 = m2 + σ 2. (11)

The black wave packet probability density ψ†ψ can be directly 
translated into a statistical mechanics normalized mass spectrum

ρ(M;m,σ ) = e
− (M−m)2

2σ2

√
2πσ

. (12)

While a non-negative average mass m ≥ 0 (the classical choice) is 
soon to be dictated on thermodynamical grounds, the mass dis-
tribution must cover, for the sake of quantum completeness, the 
entire range −∞ < M < ∞. However, the probability to have nega-
tive masses drops like ∼ exp(−m2/2σ 2) towards the classical limit.

At this stage, one may wonder where is the black hole hori-
zon actually located? As far as our wave packet is concerned, there 
is nothing special going on in the neighbourhood of r = 2Gm/c2

(and actually also not near the origin). Supported by Eq. (6), this 
suggests that a sharp horizon is merely a classical gravitational 
concept. However, one may still effectively interpret Eq. (12) as 
the quantum-mechanical profile of the horizon, with a probabil-
ity density ρ(M; m, σ) to find it at radius 2GM/c2. In some sense, 
this reminds us of the fuzzball proposal [7] where the black hole 
arises from coarse graining over horizon-free non-singular geome-
tries. See [16] for horizon wave packets, and [14,17] for horizon 
fluctuations.

Treating the quantum-mechanical black hole as a subsystem (a 
field theory defined on a black hole background is expected to be 
in a thermal state whose temperature at infinity is the Hawking 
temperature), its Gaussian mass spectrum is temperature depen-
dent. Following Fowler prescription for dealing with such a case, 
the naive partition function must be modified according to

Z(β) =
∑

n

ρne−β Fn(β), (13)

with the Boltzmann factor being traded for the Gibbs–Helmholtz 
factor. The Helmholtz free energy function F obeys the Gibbs–
Helmholtz equation

F + β
∂ F

∂β
= E(β) ⇒ β F (β) =

β∫
β0

E(b)db, (14)

with β0 to be fixed on physical grounds. To proceed, it is con-
venient to discretize the problem by dividing the normal mass 
distribution ρ(M; m, σ) into N equal probability and temperature 
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