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In this work, the effects of a nonminimally coupled model of gravity on a perturbed Minkowski metric 
are presented. The action functional of the model involves two functions, f 1(R) and f 2(R), of the Ricci 
scalar curvature R: the former extends the usual linear term found in the Einstein–Hilbert Lagrangian, 
while the latter is multiplied by the matter Lagrangian density, thus introducing an explicit nonminimal 
coupling.
Based upon a Taylor expansion around R = 0 for both functions, we find that the metric around a spheri-
cal object is a perturbation of the weak-field Schwarzschild metric: the perturbation of the tt component 
of the metric tensor is shown to be a Newtonian plus Yukawa term, which can be constrained using the 
available experimental results. It is shown that this effect can be canceled or made arbitrarily small when 
the characteristic mass scales of the two functions are similar. We conclude that the Starobinsky model 
for inflation complemented with a generalized preheating mechanism is not experimentally constrained 
by observations. The geodetic precession effects of the model are also shown to be of no relevance for 
the constraints.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Modern physics uses the concepts of dark matter and dark 
energy to advance an explanation for the astrophysical problem 
of the flattening of galactic rotation curves and the cosmological 
problem of the accelerated expansion of the universe, respectively. 
Dark energy, which is supposed to account for 74% of all the mat-
ter of the universe, has many theories on its basis, as the so-called 
“quintessence” models [1–3] and the existence of scalar fields that 
account for both dark matter and dark energy [4].

More recent approaches start from the idea of the incomplete-
ness of the fundamental laws of General Relativity (GR), involving, 
for example, corrections to the Einstein–Hilbert action. Such the-
ories involve a non-linear correction to the geometry part of the 
action, being thus called f (R) theories. In the last decade, work 
on f (R) theories has been very profitable, as thoroughly discussed 
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in Ref. [5]. These can be extended to also include a nonminimum 
coupling (NMC) between the scalar curvature and the matter La-
grangian density.

Indeed, these NMC theories have many interesting features, as 
can be seen by several studies, such as the impact on stellar 
observables [6], the energy conditions [7], the equivalence with 
multi-scalar–tensor theories (with only one degree of freedom 
arising from the f (R) term, as the NMC gives rises to an auxilia-
ry scalar field with no kinetic term) [8], the possibility to account 
for galactic [9] and cluster [10] dark matter, cosmological pertur-
bations [11], a mechanism for mimicking a Cosmological Constant 
at astrophysical scales [12], post-inflationary reheating [13] or the 
current accelerated expansion of the universe [14,15], the dynam-
ical impact of the choice of the Lagrangian density of matter [16,
17], gravitational collapse [18], its Newtonian limit [19], the ex-
istence of closed timelike curves [20] and, the most recent one, 
a determination of Solar System constraints to a cosmological 
NMC [21].

For other NMC gravity theories and their potential applications, 
see e.g. [22–26].
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One of the first motivations that brought f (R) theories into the 
physicists daily work was the Starobinsky inflation model, where 
f (R) = R + R2/(6m2) was considered [27,13], with WMAP nor-
malization of the CMB temperature anisotropies indicating that 
m ∼ 3 × 10−6 M P , where M P is the Planck mass [28].

Without directly mentioning the Starobinsky inflation, Ref. [29]
considers a quadratic f (R) function and develops an expansion in 
powers of (1/c) of an asymptotically flat Minkowski metric, show-
ing the presence of a Yukawa correction to the tt component of 
the latter [29]. Following the equivalence between scalar–tensor 
and f (R) theories [30–32], this can be interpreted as due to the 
additional gravitational contribution of the massive degree of free-
dom embodied in a non-linear f (R) function.

In this work we follow a similar procedure of Ref. [29] where 
we instead consider a NMC model. We consider that the additional 
degree of freedom arising from a non-trivial f (R) function is suf-
ficiently massive so that its effects are not extremely long-ranged, 
and as such we can neglect the background cosmological setting — 
this point (which shall be developed in the following) shows that 
this work is complementary to the recent study on the compati-
bility between cosmological and Solar System dynamics of a NMC 
model [21].

In Section 2 such a model is presented and in Section 3 the 
solution of the linearized field equations is computed. We obtain 
the solutions for the perturbative potentials Ψ (r) and Φ(r) of the 
metric, which contain a form factor specific of the Yukawa po-
tential that is addressed in Section 4. The tt component of the 
metric yields the modified gravitational potential, which includes 
a Newtonian plus a Yukawa contribution. The comparison of these 
results with available experimental constrains is presented in Sec-
tion 5. This section also addresses the radial potential through the 
constraints obtained to the geodetic precession values. Finally, con-
clusions are drawn.

2. The model

The action functional of gravity for the NMC case is of the 
form [33]

S =
∫ [

1

2
f 1(R) + [

1 + f 2(R)
]
Lm

]√−gd4x, (1)

where f i(R) (i = 1, 2) are functions of the Ricci scalar curvature R , 
Lm is the Lagrangian density of matter and g is the metric deter-
minant. The standard Einstein–Hilbert action is recovered by taking

f 1(R) = 2κ(R − 2Λ), f 2(R) = 0, (2)

where κ = c4/16πG , G is Newton’s gravitational constant and Λ is 
the Cosmological Constant.

The variation of the action functional with respect to the metric 
gμν yields the field equations

(
f 1

R + 2 f 2
RLm

)
Rμν − 1

2
f 1 gμν

= (
1 + f 2)Tμν + (�μν − gμν�)

(
f 1

R + 2 f 2
RLm

)
, (3)

where f i
R ≡ df i/dR and �μν ≡ ∇μ∇ν .

In the following we assume that matter behaves as dust, i.e.
a perfect fluid with negligible pressure and an energy–momentum 
tensor described by

Tμν = ρc2uμuν, uμuμ = −1, (4)

where ρ is the matter density and uμ is the four-velocity vector. 
The trace of the energy–momentum tensor is T = −ρc2. We use 

Lm = −ρc2 for the Lagrangian density of matter (see Ref. [16] for 
a discussion).

We consider a spherically symmetric body with a static radial 
mass density ρ = ρ(r) and we assume that the function ρ(r) and 
its first derivative are continuous across the surface of the body,

ρ(R S) = 0 and
dρ

dr
(R S) = 0, (5)

where R S denotes the radius of the spherical body. These con-
ditions will play a crucial role in the following sections, when 
integrals that have R S as an integration limit will appear.

The metric used is one that describes the spacetime around a 
spherical star like the Sun and it is given by the following pertur-
bation of the Minkowski metric, in spherical coordinates:

ds2 = −[
1 + 2Ψ (r)

]
c2dt2 + [

1 + 2Φ(r)
]
dr2 + r2dΩ2, (6)

where Ψ and Φ are perturbing functions such that |Ψ (r)| � 1 and 
|Φ(r)| � 1.

For the purpose of the present paper the functions Ψ and Φ
will be computed at order O(1/c2).

We assume that the functions f i(R) admit the following Taylor 
expansions around R = 0, which coincide with the forms used in 
Ref. [13]:

f 1(R) = 2κ

(
R + R2

6m2

)
+O

(
R3), f 2(R) = 2ξ

R

m2
+O

(
R2),

(7)

where m is a characteristic mass scale and ξ a dimensionless pa-
rameter specific of the NMC, indicating the relative strength of the 
latter with respect to the quadratic term in f 1(R).

Notice also that the Cosmological Constant is dropped, con-
sistent with the assumption that the metric is asymptotically 
flat — i.e. no cosmological background with a time-dependent, 
non-vanishing curvature R0 �= 0 is assumed, contrary to what was 
considered in Ref. [21]. In that study, a set of viability criteria for 
the form of f 2(R) was developed based upon the compatibility of 
the large scale effects (i.e. description of dark energy) and allowed 
Solar System impact: it is worth mentioning that the validity of 
such criteria required a very light additional degree of freedom, 
m0r � 1, with mass given by

m2
0 = 1

3

[
f 1

R0 − f 2
R0Lm

f 1
R R0 + 2 f 2

R R0Lm
− R0

− 3�( f 1
R R0 − 2 f 2

R R0ρ
cos) − 6ρ� f 2

R R0

f 1
R R0 + 2 f 2

R R0Lm

]
, (8)

where the subscript 0 indicates that the quantities are evaluated 
at their background cosmological value R = R0 (e.g. f i

R0 ≡ f i
R(R0)) 

and ρcos is the corresponding background cosmological density.

3. Solution of linearized modified field equations

3.1. Solution for the curvature R

The trace of the field equations (3) is

(
f 1

R + 2 f 2
RLm

)
R − 2 f 1 = −3�

(
f 1

R + 2 f 2
RLm

) + (
1 + f 2)T . (9)

After expanding the trace with the respective expressions, the 
equation is linearized: this is done by neglecting terms of order 
O(1/c3) or smaller. It yields the following equation,
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