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We investigate the correlations between the quark spin and orbital angular momentum inside the 
nucleon. Similarly to the Ji relation, we show that these correlations can be expressed in terms of specific 
moments of measurable parton distributions. This provides a whole new piece of information about the 
partonic structure of the nucleon.
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1. Introduction

One of the key questions in hadronic physics is to unravel the 
spin structure of the nucleon, a very interesting playground for 
understanding many non-pertubative aspects of quantum chromo-
dynamics (QCD). So far, most of the efforts have focused on the 
proper decomposition of the nucleon spin into quark/gluon and 
spin/orbital angular momentum (OAM) contributions (see Ref. [1]
for a detailed recent review) and their experimental extraction. The 
spin structure is however richer than this.

Since the spin and OAM have negative intrinsic parity, the only 
non-vanishing single-parton (a = q, G) longitudinal correlations al-
lowed by parity invariance are 〈Sa

z S N
z 〉, 〈La

z S N
z 〉 and 〈La

z Sa
z〉, where 

〈 〉 denotes the appropriate average, Sq,G
z is the quark/gluon longi-

tudinal spin, Lq,G
z is the quark/gluon longitudinal OAM and S N

z is 
the nucleon longitudinal spin. Since we are interested in the in-
trinsic correlations only, the global orbital motion of the system 
LN

z is not considered. The first two kinds of correlation are usually 
just called spin and OAM contributions of parton a to the nucleon 
spin. The last type is simply the parton spin–orbit correlation.

Even though generalized parton distributions (GPDs) and trans-
verse-momentum dependent parton distributions (TMDs) are natu-
rally sensitive to the parton spin–orbit correlations, no quantitative 
relation between them has been derived so far. The only quantita-
tive relation we are aware of has been obtained in Ref. [2] at the 
level of generalized TMDs (GTMDs) [3,4], also known as uninte-
grated GPDs (uGPDs), which are unfortunately not yet related to 
any experimental process.
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In this Letter we provide the relation between the quark spin–
orbit correlation and measurable parton distributions. Our ap-
proach is similar to the one used in Ref. [5] in the case of quark 
OAM, but this time in the parity-odd sector and with an asym-
metric tensor. The Letter is organized as follows: In Section 2, we 
define the quark spin–orbit correlation operator and express the 
corresponding expectation value in terms of form factors. In Sec-
tion 3 we relate these form factors to moments of measurable 
parton distributions. In Section 4, we provide an estimate of the 
various contributions, and conclude the paper with Section 5.

2. Quark spin–orbit correlation

It is well known that the light-front operator giving the total 
number of quarks can be decomposed into the sum of right- and 
left-handed quark contributions

N̂q =
∫

d3xψγ +ψ (1)

=
∫

d3xψ Rγ +ψR︸ ︷︷ ︸
N̂qR

+
∫

d3xψ Lγ
+ψL︸ ︷︷ ︸

N̂qL

, (2)

where ψR,L = 1
2 (1 ± γ5)ψ , a± = 1√

2
(a0 + a3) for a generic four-

vector a, and d3x = dx−d2x⊥ . The quark longitudinal spin operator 
simply corresponds to half of the difference between right- and 
left-handed quark numbers

Ŝq
z =

∫
d3x

1

2
ψγ +γ5ψ (3)

= 1

2

(
N̂qR − N̂qL

)
. (4)
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Similarly, we decompose the local gauge-invariant light-front 
operator for the quark longitudinal OAM [5] into the sum of right-
and left-handed quark contributions

L̂q
z =

∫
d3x

1

2
ψγ +(x × i

↔
D)zψ (5)

= L̂qR
z + L̂qL

z , (6)

where 
↔
D =→

∂ − 
←
∂ −2ig A is the symmetric covariant derivative, 

and L̂
qR,L
z = ∫

d3x 12 ψ R,Lγ
+(x × i 

↔
D)zψR,L . The difference between 

these right- and left-handed quark contributions will be referred 
to as the quark longitudinal spin–orbit correlation operator which 
reads

Ĉq
z =

∫
d3x

1

2
ψγ +γ5(x × i

↔
D)zψ (7)

= L̂qR
z − L̂qL

z . (8)

The quark spin and OAM operators attracted a lot of attention 
because they enter the Ji decomposition of the total angular mo-
mentum operator in QCD [5]

Ĵ z = Ŝq
z + L̂q

z + Ĵ G
z . (9)

Though, as we have seen, a complete characterization of the nu-
cleon longitudinal spin structure requires us to go beyond this and 
to consider the quark number and spin–orbit correlation operators 
as well. Contrary to the quark number, the quark spin–orbit corre-
lation defined by Eq. (7) has, to the best of our knowledge, never 
been studied so far. The purpose of this Letter is to fill this gap 
and to show that such a quantity is actually related to measurable 
quantities.

We basically follow the same strategy as Ji in Ref. [5], except 
for the fact that we directly consider the more general asymmetric 
gauge-invariant energy–momentum tensor instead of the symmet-
ric gauge-invariant (or Belinfante) one. We postpone the discussion 
of this particular point to Section 4. The quark OAM operator can 
then conveniently be expressed as follows

L̂q
z =

∫
d3x

(
x1 T̂ +2

q − x2 T̂ +1
q

)
, (10)

where T̂ μν is the quark energy–momentum tensor operator [1]

T̂ μν
q = 1

2
ψγ μi

↔
Dνψ (11)

= T̂ μν
qR + T̂ μν

qL (12)

with T̂ μν
qR,L = 1

2 ψ R,Lγ
μi 

↔
DνψR,L . Similarly, we rewrite the quark 

spin–orbit operator as

Ĉq
z =

∫
d3x

(
x1 T̂ +2

q5 − x2 T̂ +1
q5

)
, (13)

where T̂ μν
q5 can be considered as the parity-odd partner of the 

quark energy–momentum tensor operator

T̂ μν
q5 = 1

2
ψγ μγ5i

↔
Dνψ (14)

= T̂ μν
qR − T̂ μν

qL . (15)

Just like in the case of the generic asymmetric energy–
momentum tensor [1,6], we find that the non-forward matrix 
elements of T̂ μν

q5 can be parametrized in terms of five form fac-
tors (FFs)

〈p′, s′|T̂ μν
q5 |p, s〉 = u

(
p′, s′)Γ μν

q5 u(p, s) (16)

with

Γ
μν

q5 = P {μγ ν}γ5

2
Ãq(t) + P {μ�ν}γ5

4M
B̃q(t)

+ P [μγ ν]γ5

2
C̃q(t) + P [μ�ν]γ5

4M
D̃q(t)

+ Miσμνγ5 F̃q(t), (17)

where M is the nucleon mass, s and s′ are the initial and final 
rest-frame polarization vectors satisfying s2 = s′ 2 = 1, P = p′+p

2
is the average four-momentum, and t = �2 is the square of the 
four-momentum transfer � = p′ − p. For convenience, we used the 
notations a{μbν} = aμbν + aνbμ and a[μbν] = aμbν − aνbμ .

Since we are interested in the matrix element of Eq. (13) which 
involves only one explicit power of x, we need to expand Eq. (16)
only up to linear order in � [1,6]. Considering initial and final nu-
cleon states with the same rest-frame polarization s′ = s = (s⊥, sz)

and using the light-front spinors (see e.g. Appendix A of Ref. [7]), 
we arrive at the following expression

〈p′, s|T̂ μν
q5 |p, s〉 =

[
P {μSν} − P {μiεν}+�P

2P+

]
Ãq

[
P [μSν] − P [μiεν]+�P

2P+

]
(C̃q − 2 F̃q)

+ iεμν�P F̃q +O
(
�2) (18)

with ε0123 = +1 and the covariant spin vector Sμ = [sz P+,

−sz P− + P⊥
P+ · (Ms⊥ + P⊥sz), Ms⊥ + P⊥sz] satisfying P · S = 0

and S2 = −M2 − s2
z (P 2 − M2). For convenience, we removed the 

argument of the FFs when evaluated at t = 0, i.e. X̃q = X̃q(0).
Substituting the expansion (18) into the matrix element of 

Eq. (13) and working in the symmetric light-front frame, i.e. with 
P⊥ = 0⊥ , we find

Cq
z ≡ 〈P , ez|Ĉq

z |P , ez〉
〈P , ez|P , ez〉 = 1

2
( Ãq + C̃q). (19)

Thus, to determine the quark spin–orbit correlation, one has to 
measure the Ãq(t) and C̃q(t) FFs, which are analogous to the axial-
vector FF Gq

A(t). The B̃q(t) and D̃q(t) FFs, which are analogous to 
the induced pseudoscalar FF Gq

P (t), are not needed since they con-
tribute only to higher x-moments of T̂ μν

q5 , as one can see from the 

expansion u(p′, s) Pμ�νγ5
4M u(p, s) =O(�2).

3. Link with parton distributions

Like in the case of the energy–momentum tensor, there is no 
fundamental probe that couples to T̂ μν

q5 in particle physics. How-
ever, it is possible to relate the corresponding various FFs to spe-
cific moments of measurable parton distributions. From the com-
ponent T̂ ++

q5 , we find∫
dx xH̃q(x, ξ, t) = Ãq(t), (20)∫
dx xẼq(x, ξ, t) = B̃q(t), (21)

where H̃q(x, ξ, t) and Ẽq(x, ξ, t) are the GPDs parametrizing the 
non-local twist-2 axial-vector light-front quark correlator [8]

1

2

∫
dz−

2π
eixP+z−〈p′, s′|ψ

(
− z−

2

)
γ +γ5Wψ

(
z−

2

)
|p, s〉

= 1

2P+ u
(

p′, s′)Γ +
q Au(p, s) (22)
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