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We study N = 2, d = 4 attractor equations for the quantum corrected two-moduli prepotential F = st2 +
iλ, with λ real, which is the only correction which preserves the axion shift symmetry and modifies the
geometry.
In the classical case the black hole effective potential is known to have a flat direction. We found that in
the presence of D0–D6 branes the black hole potential exhibits a flat direction in the quantum case as
well. It corresponds to non-BPS Z �= 0 solutions to the attractor equations. Unlike the classical case, the
solutions acquire non-zero values of the axion field.
For the cases of D0–D4 and D2–D6 branes the classical flat direction reduces to separate critical points
which turn out to have a vanishing axion field.

© 2008 Published by Elsevier B.V.

1. Introduction

The attractor mechanism was firstly described in the seminal
papers [1–5] and is now the object of intense studies (for a com-
prehensive list of references, see e.g. [6]). While originally this
mechanism was discovered in the context of extremal BPS black
holes, later it was found to be present even for non-BPS ones.
Differently from the BPS black holes, such new attractors do not
saturate the BPS bound and thus, when considering a supergrav-
ity theory, they break all supersymmetries at the black hole event
horizon [7].

Attractor mechanism equations are given by the condition of
extremality [5]

φH (p,q) : ∂V BH(φ, p,q)

∂φa

∣∣∣∣
φ=φH (p,q)

= 0 (1)

of the so-called black hole potential V BH, which is a real function
of the moduli φa and magnetic pΛ and electric qΛ charges.

The crucial condition for a critical point φH (p,q) to be an at-
tractor in the strict sense is that the Hessian matrix

Hab(p,q) = ∇a∇b V BH|φ=φH = ∂a∂b V BH|φ=φH (2)

of V BH evaluated at the critical point (1) be positive definite.
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In N = 2, d = 4 Maxwell–Einstein supergravities based on ho-
mogeneous scalar manifolds, the Hessian matrix has in general
either positive or zero eigenvalues. The latter ones correspond to
massless Hessian modes, which have been proven to be flat direc-
tions of V BH [8,9].

The presence of flat directions does not contradict the essence
of the attractor mechanism: although the moduli might not be sta-
bilized, the value of the entropy does not change when the moduli
change along the flat directions of V BH. Indeed, in N = 2, d = 4 su-
pergravity, the black hole entropy is related to its potential through
the formula [5]

SBH(p,q) = π V BH(φ, p,q)|φ=φH . (3)

Therefore, whether the flat directions are present or not, it does
not affect the value of the entropy. Consequently, one may allow
the eigenvalues of the Hessian matrix to be zero, as well.

Actually, this phenomenon always occurs in N > 2-extended,
d = 4 supergravities, also for 1

N -BPS configurations, and it can be
understood through an N = 2 analysis, as being due to N = 2 hy-
permultiplets always present in these theories [6,8].

In N = 2, d = 4 supergravity with more than one vector multi-
plet coupled to the supergravity one, the black hole potential V BH
has flat directions provided that the critical points exist [9,10].
They correspond to non-BPS states with non-vanishing central
charge.

The simplest model possessing a flat direction is that with two
vector multiplets, i.e. the so-called st2 model. The latter we treat
in this Letter which might be thought of as a continuation of the
investigation started in an earlier Letter [11], where we found an
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effect of multiplicity of the attractors in the presence of quantum
corrections. This effect is related to the fact that when quantum
corrections are introduced, the scalar manifold is not simply con-
nected any more.

Even in the classical case, solutions for the attractor equa-
tions are known just for quite a few models. For example, in the
framework of special Kähler d-geometry, supersymmetric attractor
equations are solved in [12]. Non-supersymmetric ones are solved
completely both for the t3 model [13] and for the stu one [14], tak-
ing advantage of the presence of a large duality symmetry. States
with vanishing central charge are investigated in [14,15].

As it has been already mentioned, in the paper [11] we began
the study of a quantum t3 model of N = 2, d = 4 supergravity with
the prepotential1

F (X) = (X1)3

X0
+ iλ

(
X0)2 = (

X0)2(
t3 + iλ

)
, λ ∈ R.

There it was argued that this is the only possible correction pre-
serving the axion shift symmetry and that it cannot be reabsorbed
by a field redefinition [16,17]. The black hole potential of this
model does not possess any flat direction, nevertheless, the appear-
ance of the quantum contribution reveals an effect of multiplicity
of the attractors. This effect is similar to that observed in [18]. Due
to this effect other ones arise such as “transmutations” and “sep-
aration” of attractors. In st2 model they appear as well, but here
we are mostly concerned with another phenomenon, not present
in t3 model — namely, how the flat direction of the st2 model un-
dergoes the insertion of quantum corrections.

The quantum corrected st2 model that we consider is based on
the holomorphic prepotential

F (X) = X1(X2)2

X0
+ iλ

(
X0)2 = (

X0)2(
st2 + iλ

)
, λ ∈ R.

The complex moduli s and t span the rank-2 special Kähler man-
ifold (SU(1,1)/U (1))2. When λ = 0 this formula gives classical
expression for the prepotential, which we start the next section
with.

Knowing the superpotential, one may easily calculate the corre-
sponding black hole potential2 [5]

V BH = eK [
W W̄ + gab̄∇a W ∇̄b̄ W̄

]
(4)

in terms of the superpotential W and the Kähler potential K

W = qΛ XΛ + pΛ FΛ, K = − ln
[−i

(
XΛ F̄Λ − X̄Λ FΛ

)]
. (5)

2. D0–D4 branes

This brane configuration corresponds to vanishing charges qa

and p0. The quartic invariant in this case is given by

I4 = 4q0 p1(p2)2
. (6)

When it is negative, the classical black hole potential possesses a
non-compact flat direction related to the SO(1,1) manifold [9]

1 In general, λ is related to perturbative quantum corrections at the level of non-
linear sigma model, computed by 2-dimensional CFT techniques on the world-sheet.
For instance, in Type I I A C Y3-compactifications [19–21]

λ = −χζ(3)

16π3
,

where χ is the Euler character of C Y3, and ζ is the Riemann zeta-function. Within
such a framework, it has been shown that λ has a 4-loop origin in the non-linear
sigma-model [19,22,23].

2 Generally, the indices a,b, c, . . . run from 1 to n, while Λ,Σ, . . . — from 0 to n,
with n = 2 for the st2 model.

Im s = ±
√

− p1q0

(p2)2

(Re t)2 + q0
p1

(Re t)2 − q0
p1

,

Re s = p1q0

p2

2 Re t

(Re t)2 − q0
p1

,

Im t = ±
√

− q0

p1
− (Re t)2 (7)

parameterized, for instance, by the real part of the modulus t . Nat-
urally, it solves the criticality condition of the black hole potential
(4) evaluated when λ = 0

∂V BH

∂s
= 0,

∂V BH

∂t
= 0 (8)

and corresponds to a non-BPS state. The black hole entropy (3)
turns out not to depend on Re t

SBH = π
√−I4 = 2π

√
−q0 p1

(
p2

)2
(9)

in complete agreement with the attractor mechanism paradigm.
When switching the quantum parameter λ on, it is convenient

to pass to the rescaled moduli y1, y2 and the quantum parame-
ter α

s = p1
√

− q0

p1(p2)2
y1, t = p2

√
− q0

p1(p2)2
y2,

λ = q0

√
− q0

p1(p2)2
α (10)

in order to factorize the dependence of W and V BH on the charges

W = q0
[
1 − 2y1 y2 − (

y2)2]
,

V BH = 1

2

√−I4 v(y, ȳ) =
√

− q0 p1
(

p2
)2

v(y, ȳ). (11)

The expression for the black hole potential is quite cumbersome
and not too illustrative, so we restricted ourselves to writing down
explicitly only the superpotential. The function v(y, ȳ) is a rational
one with the numerator being a polynomial of ninth degree and
the denominator — of eighth degree on ya and ȳa . So at the mo-
ment it is quite improbable to resolve attractor mechanism equa-
tions (8) analytically. Nevertheless, numerical simulations show
that all solutions to Eqs. (8) have vanishing values of the axion
fields

Re y1 = Re y2 = 0. (12)

This result differs from that present in the classical case (7). With
this assumption, the attractor mechanism equations become

4α4 − α3[−4t2
1t2 − 2t2

(−3 + t2
2

) + 2t1
(
3 + t2

2

)]
+ α2t1t2

[
5 + 32t2

1t2
2 + 11t4

2 + t1
(−6t2 + 26t3

2

)]
− 4αt2

1t3
2

[−1 + 3t2
2 + 2t2

1t2
2 + 2t4

2 + t1t2
(
9 + t2

2

)]
− 8t3

1t5
2

(−1 + t4
2

) = 0,

4α4 + 4α3t2
(−3 + t2

2

) + α2t2
2

[
5 + (−6 + 32t2

1

)
t2

2 + 32t1t3
2 + 5t4

2

]
− 4αt1t4

2

[−1 + 6t2
2 + 4t2

1t2
2 − t4

2 + 2t1t2
(
3 + t2

2

)]
+ 8t2

1t6
2

(
1 − 2t2

1t2
2 + t4

2

) = 0, (13)

where for the sake of brevity we denoted ta = Im ya . Depending on
the value of the parameter α, the number of the solutions to the
Eqs. (13) and their stability change. The stable solutions have all
eigenvalues of the Hessian matrix positive, while for the unstable
ones — one of them is negative. In what follows we consider only
stable solutions.
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