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Anisotropic fluid dynamics in the early stage of relativistic heavy-ion collisions ✩
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A formalism for anisotropic fluid dynamics is proposed. It is designed to describe boost-invariant
systems with anisotropic pressure. Such systems are expected to be produced at the early stages of
relativistic heavy-ion collisions, when the timescales are too short to achieve equal thermalization of
transverse and longitudinal degrees of freedom. The approach is based on the energy–momentum and
entropy conservation laws, and may be regarded as a minimal extension of the boost-invariant standard
relativistic hydrodynamics of the perfect fluid. We show how the formalism may be used to describe the
isotropization of the system (the transition from the initial state with no longitudinal pressure to the
final state with equal longitudinal and transverse pressure).

© 2008 Elsevier B.V.

1. At present, the most successful description of early parton
dynamics is achieved with the help of the relativistic hydrodynam-
ics [1–3]. With the equation of state incorporating the phase tran-
sition and with the appropriate modeling of the freeze-out process,
the hydrodynamic approach leads to very successful description of
the hadron transverse-momentum spectra and the elliptic flow co-
efficient v2 [4–6]. We also note that with a suitable modification of
the initial conditions, the hydrodynamic approach describes consis-
tently the HBT radii [7].

In spite of those clear successes, the use of the hydrodynamics
is faced with the problem of so-called early thermalization—in or-
der to have a successful description of the data, the hydrodynamic
evolution (implicitly assuming the three-dimensional local equilib-
rium) should start at a very early time, well below 1 fm/c. Such
short values can be hardly explained within the microscopic calcu-
lation.

Recently, a possible solution to the problem of early thermal-
ization has been proposed [8]. With the assumptions that only
transverse degrees of freedom are thermalized and the longitudinal
dynamics is essentially the free-streaming (as proposed originally
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in Ref. [9]), one can obtain the parton transverse-momentum spec-
tra and v2 which agree well with the data [8,10]. In this approach,
called below the transverse hydrodynamics (for general formulation
see [11]), the longitudinal pressure vanishes while the transverse
pressure is large and leads to the formation of a substantial trans-
verse flow, which is the main effect responsible for the good agree-
ment with the data.

One naturally expects that after some time the purely trans-
verse hydrodynamic evolution is transformed into the standard
hydrodynamic evolution with isotropic pressure. The typical way
to describe such transformation would be to use the kinetic theory
[12] or dissipative hydrodynamics [13,14] (see Refs. [15–17] for the
presentation of the current status of the dissipative hydrodynam-
ics). Another mechanism to describe a similar transition, from the
initial quasithermal two-dimensional parton distribution to the fi-
nal three-dimensionally isotropic parton distribution, was studied
in Ref. [18]. This approach conserves the entropy and is based on
the coupled Vlasov and Yang–Mills equations for the quark-gluon
plasma. The full isotropization of the system is in this case an ef-
fect of bending of parton trajectories in strong color fields.

The aim of this Letter is to propose the extension of the stan-
dard boost-invariant hydrodynamics, which would be suitable for
the description of systems with anisotropic pressure. In the special
cases, our approach is reduced to the transverse hydrodynamics or
standard hydrodynamics. It may be also used to describe effectively
the process of full isotropization of the pressure.
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The proposed formalism is based on the energy, momentum,
and entropy conservation laws. The use of the entropy conserva-
tion is suggested by various modeling of the RHIC data. For exam-
ple, the PHOBOS data [20] shows that the numbers of produced
hadrons per wounded nucleon in central d + Au and Au + Au col-
lisions are very much similar (differences smaller than 30%). This
indicates that equilibration/isotropization effects do not produce a
large amount of the entropy. In addition, the recently observed
scalings of the hadron production with the number of so-called
wounded constituents [21] leave little room for extra particle pro-
duction during the evolution of the system.

From the microscopic point of view, one may consider two ex-
treme cases where the dynamics conserves the entropy: either the
collisions between the particles may be neglected or the scattering
rate is so high that the system stays in local thermal equilibrium.
Since in the latter case the pressure is isotropic, our formalism may
be adequate only for the effective description of the collisionless
systems. We may consider here the complicated mean-field dy-
namics (see Ref. [18] discussed above) or the approximate macro-
scopic description of systems during a limited period of time when
the effects of the collisions may be neglected (see Ref. [19] for the
discussion of a related problem).

2. Our starting point is the following form of the energy–
momentum tensor1

T μν = (ε + P T )UμUν − P T gμν − (P T − P L)V μV ν, (1)

where ε is the energy density, P T and P L are the transverse and
longitudinal pressure, and Uμ is the four-velocity of the fluid satis-
fying the normalization condition UμUμ = 1. In the isotropic case,
the pressures P T and P L are equal, P T = P L = P , and the energy–
momentum tensor takes the standard form. For the anisotropic
fluid, the last term in (1) is different from zero. The fourvector
V μ defines the direction of the longitudinal pressure. It is space-
like, orthogonal to Uμ , UμVμ = 0, and normalized by the con-
dition V μVμ = −1. In the local rest frame of the fluid element
we have Uμ = (1,0,0,0) and V μ = (0,0,0,1), hence the energy–
momentum tensor (1) takes the expected form

T μν =
⎛
⎜⎝

ε 0 0 0
0 P T 0 0
0 0 P T 0
0 0 0 P L

⎞
⎟⎠ . (2)

For the boost-invariant systems the fluid four-velocity Uμ has the
structure

Uμ = (
u0 coshη, ux, u y, u0 sinhη

)
, (3)

where uμ = (u0, ux, u y,0) is the fluid four-velocity at z = 0 (for
the vanishing longitudinal coordinate), and η = 1/2 ln(t + z)/(t − z)
is the space–time rapidity. With the normalization condition u2

0 −
u2

x −u2
y = 1 we automatically have U 2 = 1. The four-vector V μ sat-

isfying the appropriate normalization and orthogonality conditions
has the form

V μ = (sinhη,0,0, coshη). (4)

In this Letter we restrict our considerations to the case of mass-
less particles, where T μ

μ = 0 and ε = 2P T + P L . As in the stan-
dard hydrodynamics, the evolution equations are obtained from
the energy–momentum conservation law

∂μT μν = 0. (5)

1 Throughout the Letter we use the natural units with c = h̄ = 1. The metric ten-
sor gμν = diag(1,−1,−1,−1).

The projection of Eq. (5) on the four-velocity Uν yields

Dε + (ε + P T )∂μUμ − �Uν V μ∂μV ν = 0, (6)

where we have introduced the short-hand notation for the total
time derivative, D ≡ Uμ∂μ and the difference of the pressures,
� = P T − P L . In addition to the energy–momentum conservation
law (5) we demand that there is a conserved entropy current char-
acterizing the system. We write it in the form ∂μ(σ Uμ) = 0 or
equivalently as

Dσ + σ∂μUμ = 0, (7)

where σ is the entropy density. Moreover, with the definition (4)
one finds

V μ∂μV ν = ∂ν lnτ , (8)

where τ = √
t2 − z2 is the longitudinal proper time. Eqs. (7) and

(8) allow us to rewrite Eq. (6) in the form

Dε = (ε + P T )

σ
Dσ + �

τ
Dτ . (9)

Eq. (9) indicates that in the general case the energy density may be
considered as a function of the two variables, ε = ε(σ , τ ), hence
ε(τ , x, y) = ε[σ(τ , x, y), τ ]. We emphasize that this is a novel fea-
ture of our approach, which distinguishes it from the standard
hydrodynamics where the energy density depends only on the en-
tropy density, ε = ε(σ ) and ε(τ , x, y) = ε[σ(τ , x, y)].

3. The functional dependence ε = ε(σ , τ ) plays a role of the
generalized equation of state for our system. Eq. (9) is satisfied if the
two conditions hold,(

∂ε

∂σ

)
τ

= ε + P T

σ
,

(
∂ε

∂τ

)
σ

= �

τ
. (10)

Multiplying Eq. (10) by σ and τ , respectively, and dividing both of
them by ε we obtain a simple set of equations(

∂ε′

∂σ ′

)
τ ′

= 4

3
+ �′

3
,

(
∂ε′

∂τ ′

)
σ ′

= �′, (11)

where ε′ = ln(ε/ε0), �′ = �/ε, σ ′ = ln(σ /σ0), and τ ′ = ln(τ/τ0)

with ε0, σ0, τ0 being arbitrary constants.2 The thermodynamic
consistency requires that dε′ is the total derivative, hence the
mixed second derivatives of the function ε′(σ ′, τ ′) are equal. This
condition implies that �′ must be a function of the single variable,
namely �′ = �′(σ ′ + 3τ ′). By the direct integration of Eq. (11) we
find that the energy density function must be of the form

ε = ε0

(
σ

σ0

)4/3

R(x), x = σ

σ0

(
τ

τ0

)3

. (12)

The function R(x) is related to the function �′(x) by the equation

R(x) = exp

[
1

3

ln x∫
0

�′(y)dy

]
. (13)

In the similar way we may express the transverse and longitudinal
pressure, namely

P T = ε0

(
σ

σ0

)4/3[ R

3
+ xR ′

]
,

P L = ε0

(
σ

σ0

)4/3[ R

3
− 2xR ′

]
, (14)

2 Their values may be arranged to impose the appropriate initial conditions.
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